https://scut.online/p/274

首先要判断是一颗树,并且找出树的直径。

是一棵树,首先边恰好有n-1条,其次要连通,这两个条件已经充分了,当然判环可以加速。

两次dfs找出直径,一边叫做L,另一边叫做R。(第一次写这个)

然后树形dp。

规定其中一个叶子作为树根。然后fx表示从x向下(叶子)走能走到的最远距离,这个非常简单。

然后漏了什么情况呢?从x向上走的情况。

这个时候要从根开始维护一个叫做gx的数组,那么每次孩子v的gx就是父亲u的gx(继续向上走)和u的fx(从父亲开始往下走)的最大值。注意这个时候往下走的不能走回去v,所以要记录两个fx,并且记录大的那个是走哪个方向的。

边界:在叶子/树根等不能走的位置,根据定义,距离为0,点序号为本身。

#include<bits/stdc++.h>
using namespace std; const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f; struct Edge {
int v, w;
}; vector<Edge> e[MAXN]; void init0(int n) {
for(int i = 0; i <= n; ++i)
e[i].clear();
} int cnt, vis[MAXN], dis[MAXN], maxdis, L, R; void init1(int n) {
memset(vis, false, sizeof(vis[0]) * (n + 1));
memset(dis, 0, sizeof(dis[0]) * (n + 1));
cnt = 0, maxdis = 0;
} bool dfs1(int id, int fa) {
vis[id] = true, ++cnt;
for(auto p : e[id]) {
int v = p.v, w = p.w;
if(v == fa)
continue;
if(vis[v])
return false;
dis[v] = dis[id] + w;
if(dis[v] > maxdis)
maxdis = dis[v], L = v;
if(dfs1(v, id) == false)
return false;
}
return true;
} void init2(int n) {
memset(dis, 0, sizeof(dis[0]) * (n + 1));
maxdis = 0;
} void dfs2(int id, int fa) {
for(auto p : e[id]) {
int v = p.v, w = p.w;
if(v == fa)
continue;
dis[v] = dis[id] + w;
if(dis[v] > maxdis)
maxdis = dis[v], R = v;
dfs2(v, id);
}
} struct F {
int v, w, s;
F(int v = 0, int w = 0, int s = 0): v(v), w(w), s(s) {}
} f[MAXN], f2[MAXN], tmp; void maintainF(int id) {
if(tmp.w > f2[id].w || tmp.w == f2[id].w && tmp.v < f2[id].v) {
f2[id] = tmp;
if(f2[id].w > f[id].w || f2[id].w == f[id].w && f2[id].v < f[id].v)
swap(f[id], f2[id]);
}
} void dfs3(int id, int fa) {
f[id] = f2[id] = F(id, 0, -1);
for(auto p : e[id]) {
int v = p.v, w = p.w;
if(v == fa)
continue;
dfs3(v, id);
tmp.w = f[v].w + w, tmp.v = f[v].v, tmp.s = v;
maintainF(id);
}
} struct G {
int v, w;
} g[MAXN]; F getF(int id, int fa) {
if(f[fa].s == id)
return f2[fa];
return f[fa];
} void maintainG(int id, int fa, int faw) {
if(fa == 0) {
g[id].w = 0;
g[id].v = id;
return;
}
tmp = getF(id, fa);
if(g[fa].w > tmp.w) {
g[id].w = g[fa].w + faw;
g[id].v = g[fa].v;
} else if(g[fa].w == tmp.w) {
g[id].w = g[fa].w + faw;
g[id].v = min(tmp.v, g[fa].v);
} else {
g[id].w = tmp.w + faw;
g[id].v = tmp.v;
}
} void dfs4(int id, int fa, int faw) {
maintainG(id, fa, faw);
for(auto p : e[id]) {
int v = p.v, w = p.w;
if(v == fa)
continue;
dfs4(v, id, w);
}
} int getFG(int id) {
if(f[id].w > g[id].w)
return f[id].v;
else if(f[id].w == g[id].w)
return min(f[id].v, g[id].v);
return g[id].v;
} int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int n, m, k;
while(~scanf("%d%d%d", &n, &m, &k)) {
if(m != n - 1) {
for(int i = 1, u, v, w; i <= m; ++i)
scanf("%d%d%d", &u, &v, &w);
puts("There is no B-Tree");
continue;
}
init0(n);
for(int i = 1, u, v, w; i <= m; ++i) {
scanf("%d%d%d", &u, &v, &w);
e[u].push_back({v, w});
e[v].push_back({u, w});
}
init1(n);
if(dfs1(1, 0) == false || cnt != n) {
puts("There is no B-Tree");
continue;
}
init2(n);
dfs2(L, 0);
if(dis[R] > k) {
puts("There is no B-Tree");
continue;
}
dfs3(R, 0);
dfs4(R, 0, 0);
for(int i = 1; i <= n; ++i)
printf("%d\n", getFG(i));
}
}

SCUT - 274 - CC B-Tree - 树形dp的更多相关文章

  1. 熟练剖分(tree) 树形DP

    熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...

  2. hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)

    题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: ...

  3. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

  4. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

  5. hdu6035 Colorful Tree 树形dp 给定一棵树,每个节点有一个颜色值。定义每条路径的值为经过的节点的不同颜色数。求所有路径的值和。

    /** 题目:hdu6035 Colorful Tree 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6035 题意:给定一棵树,每个节点有一个颜色值.定 ...

  6. 5.10 省选模拟赛 tree 树形dp 逆元

    LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...

  7. Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】

    题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...

  8. codeforces Round #263(div2) D. Appleman and Tree 树形dp

    题意: 给出一棵树,每个节点都被标记了黑或白色,要求把这棵树的其中k条变切换,划分成k+1棵子树,每颗子树必须有1个黑色节点,求有多少种划分方法. 题解: 树形dp dp[x][0]表示是以x为根的树 ...

  9. POJ 2486 Apple Tree(树形DP)

    题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...

随机推荐

  1. Git回滚到指定的commit

    查看历史commint $ git log (可以记下sha码) 回退命令: $ git reset --hard HEAD^ 回退到上个版本$ git reset --hard HEAD~3 回退到 ...

  2. 【牛客Wannafly挑战赛23】F 计数

    题目链接 题意 给定一张边带权的无向图,求生成树的权值和是 k 的倍数的生成树个数模 p 的值. \(n\leq 100,k\leq 100,p\mod k=1\) Sol 看见整除然后 \(p\mo ...

  3. [洛谷P4107] HEOI2015 兔子与樱花

    问题描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...

  4. node.js从入门到起飞

    第一个node程序: 首先创建一个js文件,命名index.js(可随意),然后在文件里面输入 : console.log("Hello World"); 使用 Git Bash ...

  5. 小波神经网络(WNN)

    人工神经网络(ANN) 是对人脑若干基本特性通过数学方法进行的抽象和模拟,是一种模仿人脑结构及其功能的非线性信息处理系统. 具有较强的非线性逼近功能和自学习.自适应.并行处理的特点,具有良好的容错能力 ...

  6. EQS 自定义Context 如何用Testing Pawn 进行测试?

    比如自定义了一个玩家的Context, 那么需要把这个玩家直接放置到场景中 在Context中override Provide Single Actor函数,按类型获取所有的Actor,其中第一个作为 ...

  7. git pull失误提交

    git pull 提示错误,Your local changes to the following files would be overwritten by merge 到公司后本来打算git pu ...

  8. 大数据笔记(五)——HDFS的高级特性

    一.HDFS的回收站: recyclebin 1.HDFS的回收站默认是关闭的 2.启用回收站:去core-site.xml配置 路径:/root/training/hadoop-2.7.3/etc/ ...

  9. SpringBoot项目的前端+thymeleaf模板引擎

    SpringBoot项目创建之后,后台的框架是SpringMVC.但前端的resource和template目录都是空的.这个时候需要创建前台页面. 习惯上,我们会创建JSP,但是,SpringBoo ...

  10. slider组件

    slider组件,是一个强大的滑动选择器组件: 属性: min:类型 数字 滑动选择器的(范围)最小值 max:类型 数字 滑动选择器的(范围)最大值 step:类型 数字 步长(滑一次走的距离)  ...