这道题跟另一道题很像,先看看那道题吧


巨神兵(obelisk)

题面
  • 欧贝利斯克的巨神兵很喜欢有向图,有一天他找到了一张nnn个点mmm条边的有向图。欧贝利斯克认为一个没有环的有向图是优美的,请问这张图有多少个子图(即选定一个边集)是优美的?答案对 1,000,000,0071,000,000,0071,000,000,007 取模。
  • n&lt;=17n&lt;=17n<=17
分析
  • 这道题就是枚举拓扑序最后的点集来转移
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int MAXN = 17, MAXS = 1<<17, MAXM = 250, mod = 1e9+7;
int n, m, flag[MAXS], f[MAXS], mul[MAXM+1], sum[MAXS], in[MAXS];
bool g[MAXN][MAXN];
int main ()
{
scanf("%d%d", &n, &m);
for(int x, y, i = 1; i <= m; i++)
scanf("%d%d", &x, &y), g[x-1][y-1] = true; //邻接表存图
flag[0] = -1;
for(int s = 1; s < (1<<n); s++) flag[s] = flag[s>>1] * (s & 1 ? -1 : 1); //求容斥系数 奇数个为1 偶数个为-1
mul[0] = 1;
for(int i = 1; i <= m; i++) mul[i] = mul[i-1] * 2 % mod; //预处理2^k
f[0] = 1;
for(int i = 0; i < (1<<n)-1; i++)
{
for(int k = 0; k < n; k++) in[1<<k] = 0; //计算入度 把k点的入度存在 1<<k上
for(int j = 0; j < n; j++)
if(i & (1<<j))
for(int k = 0; k < n; k++)
in[1<<k] += g[j][k];
int t = (1<<n)-1-i; //t为当前状态的补集,即剩下的点
sum[0] = 0;
for(int s = (t-1)&t; ; s = (s-1)&t) //枚举本次选取的点对于t的补集
{
int now = t ^ s, last = now & -now; //now 是本次选取的点
sum[now] = sum[now-last] + in[last];
f[i+now] = ((LL)f[i+now] + (LL)flag[now] * mul[sum[now]] * f[i]) % mod;
if(!s) break;
}
}
printf("%d\n", (f[(1<<n)-1]+mod)%mod);
}

BZOJ 3812 主旋律

  • 这道题做法差不多,不过是枚举拓扑序最后的强连通分量来进行转移

    详见大佬博客 Miskcoo’s Space
#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
const int MAXS = 1<<15;
const int MAXN = 15;
int n, m, Out[MAXS], In[MAXS], mul[MAXN*MAXN];
int f[MAXS], g[MAXS], bitcnt[MAXS], h[MAXS], p[MAXS];
int main () {
scanf("%d%d", &n, &m);
for(int i = 0, x, y; i < m; ++i) {
scanf("%d%d", &x, &y);
x = 1 << (x-1);
y = 1 << (y-1);
Out[x] |= y;
In[y] |= x;
}
mul[0] = 1;
for(int i = 1; i < n*n; ++i)
mul[i] = 2ll * mul[i-1] % mod;
bitcnt[0] = 0;
for(int i = 1; i < (1<<n); ++i)
bitcnt[i] = bitcnt[i>>1] + (i&1);
for(int state = 1; state < (1<<n); ++state) {
int one = state & -state, Outside = state ^ one;
for(int i = Outside; i; i = (i-1)&Outside)
g[state] = (g[state] - 1ll * f[state^i] * g[i] % mod) % mod;
h[state] = h[Outside] + bitcnt[In[one]&Outside] + bitcnt[Out[one]&Outside];
f[state] = mul[h[state]];
for(int sub = state; sub; sub = (sub-1)&state) {
if(sub != state) {
int del = (sub^state) & -(sub^state);
p[sub] = p[sub^del] + bitcnt[Out[del]&sub] - bitcnt[In[del]&(sub^state)];
}
else p[sub] = 0;
f[state] = (f[state] - 1ll * mul[h[state^sub]+p[sub]] * g[sub] % mod) % mod;
}
g[state] = (g[state] + f[state]) % mod;
}
printf("%d\n", (f[(1<<n)-1]+mod)%mod);
}

BZOJ 3812 主旋律 (状压DP+容斥) + NOIP模拟赛 巨神兵(obelisk)(状压DP)的更多相关文章

  1. NOIp模拟赛 巨神兵(状压DP 容斥)

    \(Description\) 给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环. \(n\leq17\). \(Solution\) 问题也等价于,用不同的边集构造DA ...

  2. 【noip模拟赛7】上网 线性dp

    描述 假设有n个人要上网,却只有1台电脑可以上网.上网的时间是从1 szw 至 T szw ,szw是sxc,zsx,wl自创的时间单位,至于 szw怎么换算成s,min或h,没有人清楚.依次给出每个 ...

  3. 【noip模拟赛5】任务分配 降维dp

    描述 现有n个任务,要交给A和B完成.每个任务给A或给B完成,所需的时间分别为ai和bi.问他们完成所有的任务至少要多少时间. 输入 第一行一个正整数n,表示有n个任务.接下来有n行,每行两个正整数a ...

  4. (计数器)NOIP模拟赛(神奇的数位DP题。。)

    没有原题传送门.. 手打原题QAQ [问题描述]     一本书的页数为N,页码从1开始编起,请你求出全部页码中,用了多少个0,1,2,…,9.其中—个页码不含多余的0,如N=1234时第5页不是00 ...

  5. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  6. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  7. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  8. P5405-[CTS2019]氪金手游【树形dp,容斥,数学期望】

    前言 话说在\(Loj\)下了个数据发现这题的名字叫\(fgo\) 正题 题目链接:https://www.luogu.com.cn/problem/P5405 题目大意 \(n\)张卡的权值为\(1 ...

  9. 【noip模拟赛5】细菌 状压dp

    [noip模拟赛5]细菌   描述 近期,农场出现了D(1<=D<=15)种细菌.John要从他的 N(1<=N<=1,000)头奶牛中尽可能多地选些产奶.但是如果选中的奶牛携 ...

随机推荐

  1. RocketMQ之三:RocketMQ集群环境搭建

    1.初步理解Producer/Consumer Group 在安装RocketMQ之前我们先来理解Group概念,在RocketMQ中Group是很重要的.通过Group机制,让RocketMQ天然的 ...

  2. Python 实现把两个排好序的的列表合并成一个排序列表

    列表是升序的 # -*- coding: utf-8 -*- # 合并两个排序的数组 def merge_list(a, b): if not a: return b if not b: return ...

  3. 快速了解NIO

    NIO的由来 我们都知道,在jdk1.4的时候就开始引入NIO了,它是基于Selector机制的非阻塞I/O,可以将多个异步的I/O操作集中到一个或几个线程中进行处理,目的就是为了代替阻塞I/O,提到 ...

  4. (十三)自定义JSTL标签

    前面的博客,我们讲过了 自定义 el函数 : 讲一个 自定义标签技术 : 目录 自定义标签 快速入门:使用标签输出客户机IP 关于标签处理器类的方法 自定义标签功能扩展 传统标签 简单标签 配置简单标 ...

  5. 导出excel的功能效果实现

    <el-button @click="exportExcel" > <i style="display: inline-block;"> ...

  6. Luogu5363 SDOI2019移动金币(博弈+动态规划)

    容易想到可以转化为一个有m堆石子,石子总数不超过n-m的阶梯博弈.阶梯博弈的结论是相当于只考虑奇数层石子的nim游戏. nim和不为0不好算,于是用总方案数减掉nim和为0的方案数.然后考虑dp,按位 ...

  7. (十五)struts2之注解

    一.作用 以用来替换struts.xml配置文件 使用前提 :必须引入struts2-convention-plugin-2.3.14.jar 这个jar包 二.参数 @Action来代替<ac ...

  8. JDBC 学习复习8 C3P0数据源使用

    C3P0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展.目前使用它的开源项目有Hibernate,Spring等. c3p0与dbcp区别 dbcp ...

  9. 听课笔记--DP--最大子矩阵和

    最大子矩阵问题 给定一个n*n(0<n<=120)的矩阵, 矩阵内元素有正有负, 请找到此矩阵的内部元素和最大的子矩阵 样例输入: 4 0 -2 -7  0  9  2 -6  2  -4 ...

  10. document对象详解

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <HTML> <HEAD ...