luogu题解 UVA534 【Frogger--最小瓶颈边
题目链接:
Update 6.18
多点对最短瓶颈路算法:https://www.cnblogs.com/Rye-Catcher/p/9194967.html
思路:
题意就是叫你求\(1,2\)点之间的最小瓶颈路,何谓最小瓶颈路呢?
对于无向图\(u,v\)两个顶点,若两个顶点有多条路径,设第\(i\)条路径经过边权最大的边权为\(w[i]\),那么\(u,v\)两点的最小瓶颈路就是\(min(w[i])\)
我们用Kruskal,将边权从小到大排序后构建MST,若加入两点\(u,v\)且\(fa[u]=1\) \(fa[v]=2\),则此时的边权\(edge(u,v)\)就是最小瓶颈路
为了上述处理过程我们用带权路径压缩并查集,\(rk[1]\) \(rk[2]\)设为很大的数(暴力的数),以保证生成树中两点的祖先都是\(1\)或\(2\)
同时注意UVA很多题目的特点:毒瘤输出
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <cstring>
#define ri register int
#define ll long long
using namespace std;
const int maxn=205;
struct Edge{
int u,v;
double dis;
bool operator<(const Edge & b)const{
return dis<b.dis;
}
}edge[1926081];
int n;
int fa[maxn],rk[maxn];
int px[maxn],py[maxn];
int get(int x){
if(fa[x]!=x)fa[x]=get(fa[x]);
return fa[x];
}
inline void merge(int x,int y){
if(rk[x]>rk[y]){
fa[y]=x;
rk[x]+=rk[y];
}
else
{
fa[x]=y;
rk[y]+=rk[x];
}
return ;
}
int main(){
int u,v,e,t=0;
while(scanf("%d",&n)!=EOF){
if(!n)break;t++;
int cnt=0,tot=0;
for(ri i=1;i<=n;i++){
fa[i]=i,rk[i]=0;
scanf("%d %d",&px[i],&py[i]);
for(ri j=1;j<i;j++){
double d=sqrt((double)(px[i]-px[j])*(px[i]-px[j])+(double)(py[i]-py[j])*(py[i]-py[j]));
edge[++tot].u=i,edge[tot].v=j;
edge[tot].dis=d;
}
}
rk[1]=rk[2]=1926817;
sort(edge+1,edge+1+tot);
for(ri i=1;i<=tot;i++){
u=edge[i].u,v=edge[i].v;
u=get(u),v=get(v);
if(u!=v){
cnt++;
if((u==1&&v==2)||(u==2&&v==1)){
printf("Scenario #%d\n",t);
printf("Frog Distance = %.3lf\n\n",edge[i].dis);
//printf("%.3lf\n",edge[i].dis);
break;
}
else{
merge(u,v);
}
}
if(cnt==n-1)break;
}
memset(edge,0,sizeof(edge));
}
return 0;
}
luogu题解 UVA534 【Frogger--最小瓶颈边的更多相关文章
- 【UVA534】Frogger 最小瓶颈路
题目大意:给定一张 N 个点的完全图,求 1,2 号节点之间的一条最小瓶颈路. 题解:可知,最小瓶颈路一定存在于最小生成树(最小瓶颈树)中.因此,直接跑克鲁斯卡尔算法,当 1,2 号节点在同一个联通块 ...
- poj 2253 Frogger 最小瓶颈路(变形的最小生成树 prim算法解决(需要很好的理解prim))
传送门: http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS Memory Limit: 65536K Total Submissi ...
- 最小瓶颈路 Uva 534 Frogger
说明:关于Uva的题目,可以在vjudge上做的,不用到Uva(那个极其慢的)网站去做. 最小瓶颈路:找u到v的一条路径满足最大边权值尽量小 先求最小生成树,然后u到v的路径在树上是唯一的,答案就是这 ...
- POJ 2253 Frogger【最短路变形/最小生成树的最大权/最小瓶颈树/A到B多条路径中的最小的最长边】
Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sit ...
- 【uva 534】Frogger(图论--最小瓶颈路 模版题)
题意:平面上有N个石头,给出坐标.一只青蛙从1号石头跳到2号石头,使路径上的最长便最短.输出这个值.(2≤N≤200) 解法:最小瓶颈树.而由于这题N比较小便可以用2种方法:1.最短路径中提到过的Fl ...
- 【UVA10816】Travel in Desert (最小瓶颈路+最短路)
UVA10816 Travel in Desert 题目大意 沙漠中有一些道路,每个道路有一个温度和距离,要求s,t两点间的一条路径,满足温度最大值最小,并且长度最短 输入格式 输入包含多组数据. 每 ...
- HDU4081:Qin Shi Huang's National Road System (任意两点间的最小瓶颈路)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- P1396 营救(最小瓶颈路)
题目描述 “咚咚咚……”“查水表!”原来是查水表来了,现在哪里找这么热心上门的查表员啊!小明感动的热泪盈眶,开起了门…… 妈妈下班回家,街坊邻居说小明被一群陌生人强行押上了警车!妈妈丰富的经验告诉她小 ...
- CF600 div2 F.Cheap Robot(思维+最短路+最小瓶颈路)
最开始啃这题的时候我还是个不会$lca$的人,看代码看的没有一点头绪,现在趁着寒假补了很多关于图论的知识点,回头在看这题还是有很多值得学习的地方. Solution 1 (offline): 原题解: ...
随机推荐
- 代码审计之seacms v6.54 前台Getshell 复现分析
1.环境: php5.5.38+apache+seacms v6.54 上一篇文章针对seacms v6.45 进行了分析,官方给出针对修复前台geishell提供的方法为增加: $order = ( ...
- 7 vi 编辑器
1.vim编辑器的工作模式 命令模式,插入模式,可视化模式,扩展命令模式. 2.命令模式 2.1.光标定位 hjkl:小键盘上下左右移动 0 $:行头.行尾 gg G:第一行.最后一行 30G:进入第 ...
- Spring AOP增强(Advice)
Sring AOP通过PointCut来指定在那些类的那些方法上织入横切逻辑,通过Advice来指定在切点上具体做什么事情.如方法前做什么,方法后做什么,抛出异常做什么. Spring中有两种方式定义 ...
- XAMPP是什么?
XAMPP=Apache + MySQL + PHP + Perl,是一个完全免费,易于安装和使用Apache发行版,包含了Apache.MySQL.PHP和Perl.支持Windows.Linux和 ...
- 升ttttttt
升ttttttt 升级日志小书匠 版本号 新功能 修改
- 2018年第一记:EDM策略分享-EDM营销的策略分析
很久没有上博客园来更新下文章了,一则因为工作繁忙,二则对技术方面的研究时间花的少了,目前主要侧重于EDM营销方面的策略制定.很多人跟我说,做EDM营销都茫然无头绪,那么做EDM到底有什么策略呢?下面博 ...
- ubuntu快速联网
1:打开ubuntu 2:设置 特殊:red hat设置视频:http://www.jikexueyuan.com/course/1349_3.html?ss=1
- 一个好看的测试报告模板BeautifulReport
def nrun(): report = ('report_' + ('%s') % time.strftime("%Y-%m-%d-%H-%M-%S", time.localti ...
- kubernetes学习:CKA考试认证(二)
1. 它题的意思是 在 development 名称空间里面 找到名为 baz的 service 然后通过这个service的selector 找出 对应的pod . 要用 kubectl des ...
- [NodeJS] 优缺点及适用场景
概述: NodeJS宣称其目标是“旨在提供一种简单的构建可伸缩网络程序的方法”,那么它的出现是为了解决什么问题呢,它有什么优缺点以及它适用于什么场景呢? 本文就个人使用经验对这些问题进行探讨. 一. ...