CF103D Time to Raid Cowavans 根号分治+离线
题意:
给定序列 $a,m$ 次询问,每次询问给出 $t,k$. 求 $a_{t}+a_{t+k}+a_{t+2k}+.....a_{t+pk}$ 其中 $t+(p+1)k>n$
题解:
这种跳步数问题可以用根号分治来解决:
对于 $k$ 比较大的询问直接暴力跳,而对于 $k$ 较小的部分就通过预处理的手段来做.
我们现在只考虑 $k<\sqrt n$ 的情况,即需要我们预处理的部分.
如果直接维护 $f[i][j]$ 表示从 $i$ 开始以 $j$ 的步伐跳到 $n$ 所能得到的点权和的话空间根本开不下.
但是询问不是强制在线的,我们可以采用离线+滚动数组的方式来处理.
具体地,我们将这个序列分块,对于块内元素维护 $(i,pos,t)$ 即在第 $i$ 个块中第 $pos$ 个位置开始以 $t$ 的步伐条的元素和.
倒着枚举询问,我们就可以将第一维 $i$ 压掉,然后倒着处理并滚动优化一下即可.
#include <bits/stdc++.h>
#define M 550
#define N 300005
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n,m,B;
ll f[M][M],A[N],output[N];
struct query
{
int id,k;
query(int id=0,int k=0):id(id),k(k){}
};
struct Data
{
int id,pos;
vector<query>v;
}p[N];
int main()
{
int i,j;
// setIO("input");
scanf("%d",&n);
B=sqrt(n);
for(i=1;i<=n;++i)
{
scanf("%lld",&A[i]);
p[i].id=(i-1)/B+1;
if(p[i].id!=p[i-1].id) p[i].pos=1;
else p[i].pos=p[i-1].pos+1;
}
scanf("%d",&m);
for(i=1;i<=m;++i)
{
int a,b;
scanf("%d%d",&a,&b);
if(b<B) p[a].v.push_back(query(i, b));
else
{
ll re=0;
for(j=a;j<=n;j+=b) re+=A[j];
output[i]=re;
}
}
for(i=n;i>=1;--i)
{
int cur=p[i].pos;
for(j=1;j<B;++j)
{
f[p[i].pos][j]=A[i];
if(i+j<=n)
{
f[p[i].pos][j]+=f[p[i+j].pos][j];
}
}
for(j=0;j<p[i].v.size();++j)
{
output[p[i].v[j].id]=f[p[i].pos][p[i].v[j].k];
}
}
for(i=1;i<=m;++i) printf("%lld\n",output[i]);
return 0;
}
CF103D Time to Raid Cowavans 根号分治+离线的更多相关文章
- 题解【CF103D Time to Raid Cowavans】
Description 给一个序列 \(a\) ,\(m\) 次询问,每次询问给出 \(t, k\) .求 \(a_t + a_{t+k}+a_{t+2k}+\cdots+a_{t+pk}\) 其中 ...
- Codeforces Beta Round #80 (Div. 1 Only) D. Time to Raid Cowavans 离线+分块
题目链接: http://codeforces.com/contest/103/problem/D D. Time to Raid Cowavans time limit per test:4 sec ...
- Codeforces103D - Time to Raid Cowavans
Portal Description 给出长度为\(n(n\leq3\times10^5)\)的序列\(\{a_n\}\),进行\(q(q\leq3\times10^5)\)次询问:给出\(x,y\) ...
- BZOJ.4320.[ShangHai2006]Homework(根号分治 分块)
BZOJ \(\mathbb{mod}\)一个数\(y\)的最小值,可以考虑枚举剩余系,也就是枚举区间\([0,y),[y,2y),[2y,3y)...\)中的最小值(求后缀最小值也一样)更新答案,复 ...
- CF1039E Summer Oenothera Exhibition 贪心、根号分治、倍增、ST表
传送门 感谢这一篇博客的指导(Orzwxh) $PS$:默认数组下标为$1$到$N$ 首先很明显的贪心:每一次都选择尽可能长的区间 不妨设$d_i$表示在取当前$K$的情况下,左端点为$i$的所有满足 ...
- CF1039E Summer Oenothera Exhibition 根号分治,LCT,ST表
CF1039E Summer Oenothera Exhibition LG传送门 根号分治好题. 可以先看我的根号分治总结. 题意就是给出长度为\(n\)的区间和\(q\)组询问以及一个\(w\), ...
- CodeForces 103 D Time to Raid Cowavans
Time to Raid Cowavans 题意:一共有n头牛, 每头牛有一个重量,m次询问, 每次询问有a,b 求出 a,a+b,a+2b的牛的重量和. 题解:对于m次询问,b>sqrt(n) ...
- Codeforces 1039D You Are Given a Tree [根号分治,整体二分,贪心]
洛谷 Codeforces 根号分治真是妙啊. 思路 考虑对于单独的一个\(k\)如何计算答案. 与"赛道修建"非常相似,但那题要求边,这题要求点,所以更加简单. 在每一个点贪心地 ...
- BZOJ3351: [ioi2009]Regions(根号分治)
题意 题目链接 Sol 很神仙的题 我们考虑询问(a, b)(a是b的祖先),直接对b根号分治 如果b的出现次数\(< \sqrt{n}\),我们可以直接对每个b记录下与它有关的询问,这样每个询 ...
随机推荐
- python之SQLite笔记
sqlite3 打开文件并创建游标 conn = sqlite3.connect('adressbook.db')c = conn.cursor() 连接对象:sqlite3.connect('数据文 ...
- C# Unix时间戳和DateTime类型相互转换
/// <summary> /// 将Unix时间戳转换为DateTime类型时间 /// </summary> /// <param name="d" ...
- C# explicit interface implementation(显式接口实现)
C# explicit interface implementation 某个类要实现两个包含相同方法名的接口, 应该如何实现这两个方法? namespace ExplicitInterfaceImp ...
- Abp SSO
官方的文档有个坑. 首先建立的应该是 .net core MPA版本. 把文档上的startup.cs配置写入 MVC 项目中. 这样测试才能通过.不然,测试项目 var disco = a ...
- Eclipse 反编译工具 jad
** 1 下载 jad工具 ** 2 将.exe文件放在jdk安装路径下,里面有java ,javac 等命令,然后将jad.jar放在eclipse的dropins目录下 ** 3 启动eclips ...
- 编译 recastnavigation
1. https://github.com/memononen/recastnavigation 下载zip并解压 2. 打开https://www.libsdl.org/download-2.0 ...
- vue之生命周期与导航守卫
组件钩子函数: beforeCreate.created.beforeMount.mounted.beforeUpdate.updated.beforeDestroy.destoryed 还有两个特殊 ...
- Android ANR总结
1.ANR定义 ANR的全称是application not responding,是指应用程序未响应,Android系统对于一些事件需要在一定的时间范围内完成,如果超过预定时间未能得到有效响应或者响 ...
- MySQL之Text Protocol
1)[01]COM_QUIT 告诉服务器,客户端想要关闭连接 返回:或者关闭一个连接或者一个OK_Packet 有效负载: 1 [01]COM_QUIT 字段: command(1)--0x01 CO ...
- linux 基础8-shell script
1. 什么是shell script 1.1 介绍: 什么是 shell script (程序化脚本) 呢?就字面上的意义,我们将他分为两部份. 在『 shell 』部分,我们在bash当中已经提过了 ...