给定字符串 A,B,要求从 A 中取出互不重叠的 k 个非空子串,按照出现顺序拼起来后等于 B。求方案数。n ≤ 1000,m ≤ 200。


主要是状态的转移。先设计出$f_{i,j,k}$表长度$B_j$分了$k$段很好想,但是发现并不容易转移。

主要瓶颈在于当枚举了状态$f_{i,j,k}$ 的时候加入可以匹配($A_i=B_j$),怎么从前面$A_1\sim A_{i-1}$里找出$k-1$块的$j-1$的方案数。(注意下面几行都是基于当前$A_i=B_j$这个条件的)

发现这个是可以叠加的,也就是$f_{i,j,k}$可以继承$f_{i-1,j,k}$的所有方案,那么只要不断继承,像滚雪球一样,求$f_{i,j,k}$直接就从$f{i-1,j-1,k-1}$来推就好了。

第二个问题是,怎么处理拼接。如果枚举一段子串去匹配显然不太可做,发现拼接过程实际就是强制$i-1$处被选入了$k$个块内,然后和$i$位一合并,就完成了拼接。

于是,为了知道$i-1$强制被选了的情况下有多少种$k$个块的方案,故再添加一维$0/1$表示是否被选。

这下就可以推了。

具体可以参见代码(我用了顺推格式)。注意滚动。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define dbg(x) cerr << #x << " = " << x <<endl
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+,M=+,P=1e9+;
int f[][M][M][],now;
int n,m,l;
char s[N],t[M];
inline void add(int&A,int B){A+=B;A>=P&&(A-=P);}
int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
read(n),read(m),read(l);
scanf("%s",s+),scanf("%s",t+);
f[now=][][][]=;
for(register int i=;i<n;++i,now^=){
for(register int j=;j<=m;++j){
for(register int k=;k<=l;++k){
add(f[now^][j][k][],f[now][j][k][]),add(f[now^][j][k][],f[now][j][k][]);
if(s[i+]==t[j+])
add(f[now^][j+][k+][],f[now][j][k][]),
add(f[now^][j+][k+][],f[now][j][k][]),
add(f[now^][j+][k][],f[now][j][k][]);
// printf("%d %d %d %d %d\n",i,j,k,f[now][j][k][0],f[now][j][k][1]);
f[now][j][k][]=f[now][j][k][]=;
}
}
}
printf("%d\n",(f[now][m][l][]+f[now][m][l][])%P);
return ;
}

思路总结:1.继承方案,方便统计。2.子串问题中拼接可以设计0/1状态表示末尾有没有被选,这样可以直接和后面的东西合并

loj2424 「NOIP2015」子串[字符串DP]的更多相关文章

  1. LG2679 「NOIP2015」子串 线性DP

    问题描述 LG2679 题解 设\(opt[i][j]\)代表A串前\(i\)个,匹配\(B\)串前\(j\)个,选择了\(k\)个子串的方案数. 转移用前缀和优化一下. \(\mathrm{Code ...

  2. NOIP2015Day2T2子串(字符串dp)

    又被“if(a=b)”坑了QAQ...写C++还是得开Warning,这么久了pascal还没改过来咋回事啊QWQ 题目大意就不说了OWO 网上的题解都不怎么看得懂啊...好像写得都很乱?还是我太sb ...

  3. Luogu P2679 子串(字符串+dp)

    P2679 子串 题意 题目描述 有两个仅包含小写英文字母的字符串\(A\)和\(B\). 现在要从字符串\(A\)中取出\(k\)个互不重叠的非空子串,然后把这\(k\)个子串按照其在字符串\(A\ ...

  4. loj#2002. 「SDOI2017」序列计数(dp 矩阵乘法)

    题意 题目链接 Sol 质数的限制并没有什么卵用,直接容斥一下:答案 = 忽略质数总的方案 - 没有质数的方案 那么直接dp,设\(f[i][j]\)表示到第i个位置,当前和为j的方案数 \(f[i ...

  5. 【LOJ】#2065. 「SDOI2016」模式字符串

    题解 按秩合并怎么清数组对我来说真是世纪性难题 我们很熟练地想到点分,如果我们认为某个点到重心是正着读的,由于它的深度固定,它的串也是固定的,我们只要预处理出所有长度正着重复的串,反着重复的串,和它们 ...

  6. 「洛谷5017」「NOIP2018」摆渡车【DP,经典好题】

    前言 在考场被这个题搞自闭了,那个时候自己是真的太菜了.qwq 现在水平稍微高了一点,就过来切一下这一道\(DP\)经典好题. 附加一个题目链接:[洛谷] 正文 虽然题目非常的简短,但是解法有很多. ...

  7. 逛公园「NOIP2017」最短路+DP

    大家好我叫蒟蒻,这是我的第一篇信竞题解blog [题目描述] 策策同学特别喜欢逛公园. 公园可以看成一张 \(N\) 个点 \(M\) 条边构成的有向图,且没有自环和重边.其中 \(1\) 号点是公园 ...

  8. BZOJ1369/LG4395 「BOI2003」Gem 树形DP

    问题描述 LG4395 BZOJ1369 题解 发现对于结点 \(x\) ,其父亲,自己,和所有的孩子权值不同,共 \(3\) 类,从贪心的角度考虑,肯定是填 \(1,2,3\) 这三种. 于是套路树 ...

  9. LG3205/BZOJ1996 「HNOI2010」合唱队 区间DP

    区间DP 区间DP: 显然是一个区间向左右拓展形成的下一个区间,具有包含关系,所以可以使用区间DP. 状态设计: 考虑和关路灯一样设计状态 因为不知道当前这个区间是从哪个区间拓展而来,即不知道这个区间 ...

随机推荐

  1. 用Blackbox Exporter to Monitor web和端口

    1.按照exporter .wget https://github.com/prometheus/blackbox_exporter/releases/download/v0.12.0/blackbo ...

  2. iptables 命令

    NAME iptables — administration tool for IPv4 packet filtering and NAT SYNOPSIS iptables -ADC 指定链的规则 ...

  3. JAVA实验报告及第九周总结

    Java第九周作业 实验报告七 实验任务详情: 完成火车站售票程序的模拟. 要求: (1)总票数1000张: (2)10个窗口同时开始卖票: (3)卖票过程延时1秒钟: (4)不能出现一票多卖或卖出负 ...

  4. Python之数据库

    Python之数据库: 1. Mysql 2. pymysql 3. SQLAlchemy Mysql 一.概述 什么是数据库 ? 答:数据的仓库,如:在ATM的示例中我们创建了一个 db 目录,称其 ...

  5. [转帖]PKI系统深入介绍

    PKI系统深入介绍 https://blog.csdn.net/liuhuiyi/article/details/7776825 2012年07月23日 20:17:01 liuhuiyi 阅读数 4 ...

  6. gitlab不能启动了

    gitlab意外停止后不能启动,执行gitlab-ctl start 提示全部启动失败. GitLab won’t start – runsv not running. Gitlab didn’t s ...

  7. Jmeter之梯度式加压(Stepping Thread Group)

    1.添加线程组(Stepping Thread Group) 2.设置数据 学习参考网址:https://www.cnblogs.com/imyalost/p/7658816.html   这个大大的 ...

  8. DVWA reCAPTCHA key: Missing

    修改dvwa文件夹下文件config.inc.php change: $_DVWA[ 'recaptcha_public_key' ] = ' '; $_DVWA[ 'recaptcha_privat ...

  9. 进阶Java编程(1)多线程编程

    Java多线程编程 1,进程与线程 在Java语言里面最大的特点是支持多线程的开发(也是为数不多支持多线程的编程语言Golang.Clojure方言.Elixir),所以在整个的Java技术学习里面, ...

  10. Unity鼠标移动到物体上显示信息

    相信大家玩游戏的时候,鼠标移动到游戏装备上,都会显示装备的的具体信息,那么接下来就写代码把,废话不多说. 下面是 效果图 鼠标移动到装备位置显示的信息,鼠标移动不在装备区域后不现实信息,下面是代码 : ...