论文创新点:

  • 多头注意力
  • transformer模型

Transformer模型

上图为模型结构,左边为encoder,右边为decoder,各有N=6个相同的堆叠。

encoder

先对inputs进行Embedding,再将位置信息编码进去(cancat方式),位置编码如下:

然后经过多头注意力模块后,与残余连接cancat后进行一个Norm操作,多头注意力模块如下:

左图:缩放点乘注意力,这就是个平常的注意力机制,只不过多了scale和mask(仅对于decoder下面橙色框部分),使用的是dot-product attention,原文还提到另一种additive attention。

右图:多头注意力实现。每个Q,K,V都经过h个(不同)线性结构,以捕获不同子空间的信息,经过左图结构后,对h个dot-product attention进行concat后,再经过一个线性层。

之后,再通过一个有残余连接的前向网络。

decoder

同样先经过Embedding和位置编码,输入outputs右移了(因为每一个当前输出基于之前的输出)。

下面的橙色框:

之后也经过一个多头的self-attention,不同的是,它多了个mask操作。

这个mask操作是什么意思呢?注意我们的self-attention是一句话中每个词向量都与句子中所有词向量有关,对于encoder这没问题,而对于decoder,我们是根据之前的输出预测下一个输出。

举个例子,在BiLSTM中(当然这里是Transformer模型),假设我们decode时输入为A-B-C-D序列,在B处解码下一个输出时,我们根据之前的输出进行预测,但是这是双向模型,

即我们存在这样的一个之前的输出C-B-A-B,那么这个之前的输出里居然包含了我们下一个需要正确预测的C!这就是“自己看见自己”问题。

所以,mask操作是掩盖掉之后的位置(原文leftward,即向左流动的信息)的影响,原文是置为负无穷。这个橙色框我觉得可以称为half-self-attention。

最上面的橙色框:

它就不能叫self-attention结构了,因为它的K和V来自encoder的输出,Q是下面橙色框的输出。到这步为止,我们的输入inputs是完整的self-attention了,我们的输出outputs也是half-self-attention了。

好了,前戏准备完毕,开始短兵相接了。

这里的K和V一般相同,表示经过self-attention的隐藏语义向量,Q为经过half-self-attention的上一个输出,此处即为解码操作。经过一个有残余连接的前向网络,一个线性层,再softmax得到输出概率分布。

至此,Transformer模型描述完毕。


我们再看看self-attention模块,我之前一直不明白这些Q,K,V是啥东东。此处也是我个人推断

在self-attention中,K,V表示当前位置的词向量,Q表示所有位置的词向量,用Q中每一个词向量与K进行操作(类似上面缩放点乘注意力截止到softmax),得到L个(L为句子单词数)权重向量。

此时应该有2种操作,一种是对L个权重向量相加,一种是取平均。得到的结果权重向量与V点乘,即为有self-attention后的词向量。


其余的实验及结果部分不再讲述,没什么难点。

这里再提下另一篇论文《End-To-End Memory Networks》中的一个模型结构。因为这篇论文被上面论文提到,对于理解上面论文有所帮助。

上图左边为单层,右边为多层版本。

单层的输出为:

Embedding B和C用于将输入x和问题q转化为嵌入向量,Embedding A用另一套参数将输出x转化为嵌入向量,与问题q共同决定注意力权重。

因为右图涉及到众多参数,为了简化模型,作者提出2种方案,这里直接上图:

这篇论文的创新点在于右图的多层版本类似RNNs,运算复杂度也比拟RNNs,避免了RNNs存在的一些问题。在QA问题上取得不错的成绩。

bert系列一:《Attention is all you need》论文解读的更多相关文章

  1. Bert系列 源码解读 四 篇章

    Bert系列(一)——demo运行 Bert系列(二)——模型主体源码解读 Bert系列(三)——源码解读之Pre-trainBert系列(四)——源码解读之Fine-tune 转载自: https: ...

  2. Bert系列(三)——源码解读之Pre-train

    https://www.jianshu.com/p/22e462f01d8c pre-train是迁移学习的基础,虽然Google已经发布了各种预训练好的模型,而且因为资源消耗巨大,自己再预训练也不现 ...

  3. bert系列二:《BERT》论文解读

    论文<BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding> 以下陆续介绍ber ...

  4. Bert系列(二)——源码解读之模型主体

    本篇文章主要是解读模型主体代码modeling.py.在阅读这篇文章之前希望读者们对bert的相关理论有一定的了解,尤其是transformer的结构原理,网上的资料很多,本文内容对原理部分就不做过多 ...

  5. nlp任务中的传统分词器和Bert系列伴生的新分词器tokenizers介绍

    layout: blog title: Bert系列伴生的新分词器 date: 2020-04-29 09:31:52 tags: 5 categories: nlp mathjax: true ty ...

  6. Java容器--2021面试题系列教程(附答案解析)--大白话解读--JavaPub版本

    Java容器--2021面试题系列教程(附答案解析)--大白话解读--JavaPub版本 前言 序言 再高大上的框架,也需要扎实的基础才能玩转,高频面试问题更是基础中的高频实战要点. 适合阅读人群 J ...

  7. 论文解读(FedGAT)《Federated Graph Attention Network for Rumor Detection》

    论文信息 论文标题:Federated Graph Attention Network for Rumor Detection论文作者:Huidong Wang, Chuanzheng Bai, Ji ...

  8. BERT论文解读

    本文尽量贴合BERT的原论文,但考虑到要易于理解,所以并非逐句翻译,而是根据笔者的个人理解进行翻译,其中有一些论文没有解释清楚或者笔者未能深入理解的地方,都有放出原文,如有不当之处,请各位多多包含,并 ...

  9. [Attention Is All You Need]论文笔记

    主流的序列到序列模型都是基于含有encoder和decoder的复杂的循环或者卷积网络.而性能最好的模型在encoder和decoder之间加了attentnion机制.本文提出一种新的网络结构,摒弃 ...

随机推荐

  1. [人物存档]【AI少女】【捏脸数据】1222今日份的推荐

    AISChaF_20191030183624290.png

  2. 油猴Tampermonkey离线安装流程(附文件)

    1.下载插件插件包,然后解压(解压到你想放插件的位置,其实任意位置都可以,记住解压的位置) 链接:https://pan.baidu.com/s/1aanhsb6ZlapnzBeBRtp3Hg 提取码 ...

  3. 上传base64图片至七牛云,并返回图片link

    https://developer.qiniu.com/kodo/kb/1326/how-to-upload-photos-to-seven-niuyun-base64-code

  4. 灰度图像--图像分割 阈值处理之P-Tile阈值

    学习DIP第53天 转载请标明本文出处:***http://blog.csdn.net/tonyshengtan ***,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:http ...

  5. 洛谷p2375 kmp

    题意 给你一个字符串,让你求一个\(num\)数组,\(num[i]\)为长度为\(i\)的前缀的公共前后缀长度不超过\(\lfloor \frac{i}{2}\rfloor\)的个数, 例如&quo ...

  6. Linux下SHA256校验

    一.将Hash: SHA256文件和需要检验的文件放在同一个文件夹内 二.$sha256sum -c SHA265 文件 输出: 校验文件:ok

  7. 2016 Multi-University Training Contest 4 部分题解

    1001,官方题解是直接dp,首先dp[i]表示到i位置的种类数,它首先应该等于dp[i-1],(假设m是B串的长度)同时,如果(i-m+1)这个位置开始到i这个位置的这一串是和B串相同的,那么dp[ ...

  8. boost1.59编译安装

    boost 1.59.0编译及使用 1.下载: 网址:http://sourceforge.net/projects/boost/files/boost/1.59.0/ 选择:boost_1_59_0 ...

  9. Python dictionary 字典

    Python字典是另一种可变容器模型,且可存储任意类型对象,如字符串.数字.元组等其他容器模型. 一.创建字典字典由键和对应值成对组成.字典也被称作关联数组或哈希表.基本语法如下: dict = {' ...

  10. Nginx配置文件详细说明 (转)

    Nginx配置文件详细说明 原文链接:http://www.cnblogs.com/Joans/p/4386556.html 在此记录下Nginx服务器nginx.conf的配置文件说明, 部分注释收 ...