(点击此处查看原题)

解题思路

题目已经给出了树的中序遍历,因此我的想法是利用中序遍历的特点:若某子树的根结点为k,那么k之前的结点组成这一子树的左子树,k之后的结点组成这一子树的右子树,可以通过不断地枚举每个子树的根结点k,求出每个子树的最大加分:{ 左子树的最大加分*右子树的最大加分+ 根结点k的值}

以上是通过已知中序遍历想到是方法,结合已知条件,对于某一子树的中序遍历: {l, l + 1, ... , r} ,若根节点为k,那么 {l, l +1,...,k-1} 即为这一子树的左子树,{k+1,k+2,...,r}即为这一子树的右子树,因此,可以通过这种方法构造所有可能的树结构

根据上面的方法,我们通过递归求出每一段中序遍历{l,l+1,...,r}代表的子树的最大加分dp[l][r]以及根结点root[l][r],根据状态转移方程

dp[l][r] = max(dp[l][r],dp[l][k-1] + dp[k+1][r] + val[k]) { l <= k <= r}

并记录dp[l][r]取最大值时的根结点root[l][r],这样一来dp[1][n]即为我们所求的最大加分,又利用root和中序遍历求出前序遍历

代码区

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
#include<string>
#include<fstream>
#include<vector>
#include<stack>
#include <map>
#include <iomanip> #define bug cout << "**********" << endl
#define show(x, y) cout<<"["<<x<<","<<y<<"] "
#define LOCAL = 1;
using namespace std;
typedef long long ll;
const ll inf = 1e18 + ;
const int mod = 1e9 + ;
const int Max = 1e5 + ; int n;
ll val[];
ll dp[][]; //表示[l,r]子树的最大加分
int root[][]; //表示[l,r]子树的根结点
//dp,root均为以[l,r]组成的子树的数据 ll dfs(int l, int r)
{
if (l > r) //空树
return ;
if(l == r) //叶子节点
return dp[l][r] = val[l]; if (dp[l][r] != -)
{
return dp[l][r];
} for (int k = l; k <= r; k++) //枚举子树[l,r]的根结点
{
ll now = dfs(l,k-) * dfs(k + , r) + val[k];
if(now > dp[l][r])
dp[l][r] = now,root[l][r] = k;
}
return dp[l][r];
} void dfs2(int l,int r)
{
if(l > r) //空树
return;
printf("%d ",root[l][r]);
dfs2(l,root[l][r] - );
dfs2(root[l][r] + , r);
} int main()
{
#ifdef LOCAL
// freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
scanf("%d", &n);
for (int i = ; i <= n; i++)
scanf("%lld", val + i),root[i][i] = i; memset(dp,-,sizeof(dp));
dfs(,n); printf("%lld\n",dp[][n]);
dfs2(,n);
printf("\n");
return ;
}

P1040 加分二叉树(区间DP)的更多相关文章

  1. 洛谷P1040 加分二叉树(区间dp)

    P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di, ...

  2. P1040 加分二叉树 区间dp

    题目描述 设一个nn个节点的二叉树tree的中序遍历为(1,2,3,…,n1,2,3,…,n),其中数字1,2,3,…,n1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第ii个节 ...

  3. [Swust OJ 360]--加分二叉树(区间dp)

    题目链接:http://acm.swust.edu.cn/problem/360/ Time limit(ms): 1000 Memory limit(kb): 65535   Description ...

  4. cogs 106. [NOIP2003] 加分二叉树(区间DP)

    106. [NOIP2003] 加分二叉树 ★☆   输入文件:jfecs.in   输出文件:jfecs.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 设 一个 n ...

  5. 【洛谷】P1040 加分二叉树

    [洛谷]P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数 ...

  6. 【Luogu】P1040加分二叉树(区间DP)

    题目链接 区间DP,因为中序遍历的性质:区间[l,r]的任何一个数都可以是该区间的根节点. 更新权值的时候记录区间的根节点,最后DFS输出. 见代码. #include<cstdio> # ...

  7. 洛谷P1040 加分二叉树(树形dp)

    加分二叉树 时间限制: 1 Sec  内存限制: 125 MB提交: 11  解决: 7 题目描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n ...

  8. [NOIP2003] 提高组 洛谷P1040 加分二叉树

    题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...

  9. P1040 加分二叉树

    转自:(http://www.cnblogs.com/geek-007/p/7197439.html) 经典例题:加分二叉树(Luogu 1040) 设一个 n 个节点的二叉树 tree 的中序遍历为 ...

  10. 【luogu P1040 加分二叉树】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1040 今天考试考了一个区间DP...没错就是这个... 太蒟了真是连区间DP都不会...看了看题解也看不懂, ...

随机推荐

  1. Go语言 之捧腹网爬虫案例

    package main import ( "fmt" "net/http" "os" "regexp" "s ...

  2. Redis启动后基础只是讲解

    1.单进程 epoll是Linux内核为处理大批量文件描述符而作了改进的epoll,是Linux下多路复用IO接口select/poll的增强版本, 它能显著提高程序在大量并发连接中只有少量活跃的情况 ...

  3. 【java】Java.math.BigDecimal.subtract()方法实例

    java.math.BigDecimal.subtract(BigDecimal subtrahend) 返回一个BigDecimal,其值为 (this - subtrahend), 精度为 max ...

  4. 本地项目文件通过git提交到GitHub上

    参考:https://blog.csdn.net/kongying19910218/article/details/50515834 步骤: 1.初始化git,假如我们要提交test文件夹下的所有目录 ...

  5. legend3---13、vue是真的好用

    legend3---13.vue是真的好用 一.总结 一句话总结: 下次前端所有的交互页面都可以用vue 1.chrome查看post请求携带的参数? 请求的Headers里面的Form Data里面 ...

  6. Ubuntu无法找到add-apt-repository问题的解决方法

      网上查了一下资料,原来是需要 python-software-properties 于是 apt-get install python-software-properties 除此之外还要安装 s ...

  7. win10 下cuda 9.0 卸载

    1.首先 对于cuda8.0.cuda7.5的卸载都可以兼容 安装cuda9.0之后,电脑原来的NVIDIA图形驱动会被更新,NVIDIA Physx系统软件也会被更新(安装低版cuda可能不会被更新 ...

  8. SQL-W3School-高级:SQL FULL JOIN 关键字

    ylbtech-SQL-W3School-高级:SQL FULL JOIN 关键字 1.返回顶部 1. SQL FULL JOIN 关键字 只要其中某个表存在匹配,FULL JOIN 关键字就会返回行 ...

  9. Flask中路由参数

    Flask中路由参数.请求方式设置 一.参数设置 1.参数类型 Flask中参数的使用 @app.route('/parames/<username>/') def hello_world ...

  10. Hexo博客skapp主题部署填坑指南

    相信大家都很喜欢 hexo skapp 的主题,由于作者采用结巴分词,加上需要依赖各种各样的环境 所以可能大家踩过很多坑,也许每个人踩得坑不一样,这里使用 Docker 容器 centos 来部署, ...