这东西还是挺有思想的,道听途说一些东西,问问DuanYue同志,然后自己打表画树推了推,就搞出来了。

首先根据p i>p i/2(向下取整)这种形式,如果线段树学的好的人,一定能看出来,这是在唯一标号法标号后的形式,即父亲的权值大于两个儿子的权值,这是一个小根堆的样子。

那问题就是求给定数目的数字,求其能构成小根堆的个数。

这是一个类似树形dp的问题,我们设f[i]表示以当前节点为根所能构成小根堆的个数,那么有状态转移方程:

就是说当前节点及其子树一共分配了size[i]个数字,然后分给了左右子树,有上式Combine种可能,然后把左右儿子的贡献转移上来。

组合数还是老规矩打阶乘及其逆元的表,用lucas定理求一下,因为不用的话模数小的时候会崩,模数大了lucas也可以自动求组合取模。

实现过程中没有定义dp数组(其实size数组也没必要),直接带返回值的dfs搞一下。

代码略丑,勿看(主要是懒,直接define int long long 了)。

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#define int long long
using namespace std;
int n,p;
int size[];
int fac[],inv[];
int qpow(int x,int k){
int ans=;
for(;k;k>>=,x=1ll*x*x%p)
if(k&) ans=1ll*ans*x%p;
return ans;
}
void pre(){
fac[]=;
for(int i=;i<min(n,p);i++)
fac[i]=1ll*fac[i-]*i%p;
inv[min(n,p)-]=qpow(fac[min(n,p)-],p-);
for(int i=min(n,p)-;i>=;i--)
inv[i-]=1ll*inv[i]*i%p;
}
int com(int x,int y){
if(y>x) return ;
return ((1ll*fac[x]*inv[y])%p*inv[x-y]%p)%p;
}
int lucas(int x,int y){
if(!y) return ;
return com(x%p,y%p)*lucas(x/p,y/p)%p;
}
int dfs(int x){
if(x>n) return ;
size[x]++;
int a=dfs(x<<)%p;
int b=dfs(x<<|)%p;
size[x]+=size[x<<]+size[x<<|];
return 1ll*((a*b)%p*(lucas(size[x]-,size[x<<])%p))%p;
}
signed main(){
scanf("%lld%lld",&n,&p);
pre();
/*for(int i=1;i<=p;i++)
cout<<fac[i]<<" ";cout<<endl;
for(int i=1;i<=p;i++)
cout<<inv[i]<<" ";cout<<endl;*/
printf("%lld",dfs()%p);
return ;
}

Zjoi2010排列计数Perm的更多相关文章

  1. 【BZOJ2111】[ZJOI2010]排列计数(组合数学)

    [BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...

  2. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  3. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  4. P2606 [ZJOI2010]排列计数

    P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...

  5. bzoj2111 [ZJOI2010]排列计数

    Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic ...

  6. 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)

    题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...

  7. [ZJOI2010]排列计数

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  8. ●洛谷P2606 [ZJOI2010]排列计数

    题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...

  9. BZOJ2111:[ZJOI2010]排列计数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2111 https://www.luogu.org/problemnew/show/P2606#su ...

随机推荐

  1. SpringBoot整合MyBatis的分页插件PageHelper

    1.导入依赖(maven) <dependency> <groupId>com.github.pagehelper</groupId> <artifactId ...

  2. wpf之二进制资源

    一.当需要添加图片.音频.视屏的资源到wpf项目里是,可以直接把文件添加到项目里 右击add->existing item. 1.如果想将外部文件编异常目标成为二进制资源,在文件的属性窗口 Bu ...

  3. mqtt协议实现 java服务端推送功能(二)java demo测试

    上一篇写了安装mosQuitto和测试,但是用cmd命令很麻烦,有没有一个可视化软件呢? 有,需要在google浏览器下载一个叫MQTTLens的插件 打开MQTTLens后界面如下: 打开conne ...

  4. 在django中部署vue项目,不单独抽离dist文件

    1,在django项目下(app所在目录),新建vue项目,使用脚手架构建vue项目,vue create (项目名) 2,构建好以后,配置django: (1),配置settings: · 修改te ...

  5. vue的数据代理

    1. vue数据代理: data对象的所有属性的操作(读/写)由vm对象来代理操作2. 好处: 通过vm对象就可以方便的操作data中的数据3. 实现: 1). 通过Object.defineProp ...

  6. 解决docker pull 速度慢问题

    解决docker pull 速度慢问题 将docker镜像源修改为国内的: 在 /etc/docker/daemon.json 文件中添加以下参数(没有该文件则新建): { "registr ...

  7. urllib.parse:很底层,但是是一个处理url路径的好模块

    介绍 urllib.parse是为urllib包下面的一个模块,urllib的其它模块完全可以使用requests替代.但是urlli.parse我们是有必要了解的,因为该模块下面有很多操作url路径 ...

  8. 八,kubernetes集群存储卷基础。

    目录 存储卷 存储的分类 emptyDir 测试及使用 hostpath实例 Pod测试挂在共享NFS 写测试清单 测试 pv, pvc 创建几个PV 创建测试的Pod 和 PVC 存储卷 pod运行 ...

  9. 8.1.Zookeeper概念简介

    1.分布式系统概述 理解1: 分布式系统:分布式系统是针对一个大系统而言,将一个大系统分成多个子系统,即多个工程系统. 我们先看下传统的系统模式:    传统的系统模式将多个功能模块全部在一个工程中写 ...

  10. web开发中的支付宝支付和微信支付

    https://www.jianshu.com/p/155757d2b9eb <!-- wxPay --SDK--> <script src="https://res.wx ...