BZOJ 4004: [JLOI2015]装备购买 高斯消元解线性基
BZOJ严重卡精,要加 $long$ $double$ 才能过.
题意:求权和最小的极大线性无关组.
之前那个方法解的线性基都是基于二进制拆位的,这次不行,现在要求一个适用范围更广的方法.
考虑贪心:将向量组按照代价从小到大排序,依次考虑加入每一组向量,如果能被表示出来就加,表示不出来就不加.
你可能会举出一个反例:按照权值从小到大排序后要加入向量 $x,$ 但是后面有若干向量 $a,b,c,d...$ 能表示出 $x,$ 而 $x$ 却表示不出它们,你可能会说最优解法是加入后面那几个,而不加入 $x.$
然而,你可以列一个等式,就是 $a\times x_{1}+b\times x_{2}+c\times x_{3}....=x,$ 将 $x$ 移到左面,随便一个向量移到右面,变成 $a\times x_{1}+b\times x_{2}-x....=c\times x_{3}.$
而 $x$ 的代价显然要小于 $c,$ 所以我们上述的贪心策略是正确的.
#include <cstdio>
#include <algorithm>
#define N 600
#define eps 1e-5
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
struct Node
{
int w;
long double a[N];
}p[N];
bool cmp(Node a,Node b)
{
return a.w<b.w;
}
int n,m;
int mark[N];
int main()
{
int i,j;
// setIO("input");
scanf("%d%d",&n,&m);
for(i=1;i<=n;++i)
{
for(j=1;j<=m;++j)
{
double c;
scanf("%lf",&c);
p[i].a[j]=(long double) c;
}
}
for(i=1;i<=n;++i) scanf("%d",&p[i].w);
sort(p+1,p+1+n,cmp);
int ans=0, cnt=0, k;
for(i=1;i<=n;++i)
{
for(j=1;j<=m;++j)
{
if(p[i].a[j]>=-eps&&p[i].a[j]<=eps) continue;
if(!mark[j])
{
mark[j]=i,ans+=p[i].w,++cnt;
break;
}
else
{
long double div=(long double)p[i].a[j]/p[mark[j]].a[j];
for(k=j;k<=m;++k)
{
p[i].a[k]=(long double)(p[i].a[k]-(long double)div*p[mark[j]].a[k]);
}
}
}
}
printf("%d %d\n",cnt,ans);
return 0;
}
BZOJ 4004: [JLOI2015]装备购买 高斯消元解线性基的更多相关文章
- BZOJ 4004 JLOI2015 装备购买 高斯消元+线性基
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4004 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装 ...
- BZOJ 4004: [JLOI2015]装备购买 [高斯消元同余 线性基]
和前两(一)题一样,不过不是异或方程组了..... 然后bzoj的新数据是用来卡精度的吧..... 所有只好在模意义下做啦 只是巨慢无比 #include <iostream> #incl ...
- BZOJ4269再见Xor——高斯消元解线性基
题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两 ...
- 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基
题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...
- 【bzoj2115】[Wc2011] Xor DFS树+高斯消元求线性基
题目描述 输入 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图 ...
- 【bzoj3105】[cqoi2013]新Nim游戏 高斯消元求线性基
题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...
- 【bzoj4269】再见Xor 高斯消元求线性基
题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两 ...
- HDU3949/AcWing210 XOR (高斯消元求线性基)
求第k小的异或和,用高斯消元求更简单一些. 1 //用高斯消元求线性基 2 #include<bits/stdc++.h> 3 using namespace std; 4 #define ...
- bzoj 4004: [JLOI2015]装备购买 拟阵 && 高消
4004: [JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 337 Solved: 139[Submit][Status ...
随机推荐
- Luogu P2495 [SDOI2011]消耗战
题目 我们可以很快的想到一个单次\(O(n)\)的dp. 然后我们注意到这个dp有很多无用的操作,比如一条没有关键点的链可以直接去掉. 所以我们可以尝试一次dp中只管那些有用的点. 题目给的关键点显然 ...
- Java 注解(原理及其使用)
一.注解(annotation)介绍 Java在JDK5中引入源代码的注解机制. 1.什么是注解? 注解为代码添加了元数据,元数据是关于数据的组织.数据域及其关系的说明信息. 更通俗的说,注解为程序元 ...
- 【已解决】Field injection is not recommended和Could not autowired. No beans of 'xxx' type found.
目录 问题 解决办法 备注 问题 在项目中,我们使用Spring的@Autowired注解去引入其他类时有时候阿里的编码规约插件就会提示:"Field injection is not re ...
- spring-cloud 学习二 服务发现
注册中心服务发现的例子 添加module pom文件如下 <?xml version="1.0" encoding="UTF-8"?> <pr ...
- mybatis调用java类
在mybatis的映射xml文件调用java类的方法: 使用的是OGNL表达式,表达式格式为:${@prefix@methodName(传递参数名称)} 1.如下代码所示:方法必须为静态方法:以下我只 ...
- Comparable内部比较器 和 Comparator外部比较器
1:Comparable a:基本数据类型封装类都继承了Comparable接口 b:TreeSet 和TreeMap集合默认是按照自然顺序排序的 c:继承类中实现compareTo()方法,在类内部 ...
- PowerBI 实现不同角色看到内容不同支持动态权限管理
首先,在PowerBIDesktop中进行设计,先设计一个权限表: 具体权限如下: 也就是说,这些用户账号在PowerBIService登录时,会分别代表这些用户,接下来会使用一个很重要的动态函数:U ...
- ptf转图片
1.spire 官方的有水印,通过引用 //private readonly static PdfDocument doc = new PdfDocument(); //public static S ...
- 输入列号得到excel对应的字母列
zexcel_cell_column 类型是INT4 FUNCTION ZGET_EXCEL_COL. *"----------------------------------------- ...
- js小功能3:一个简单的计算器功能
html: <input type='text' id='txt1' /> <select id='select'> <option value='+'>+< ...