BZOJ严重卡精,要加 $long$  $double$ 才能过.

题意:求权和最小的极大线性无关组.
之前那个方法解的线性基都是基于二进制拆位的,这次不行,现在要求一个适用范围更广的方法.
考虑贪心:将向量组按照代价从小到大排序,依次考虑加入每一组向量,如果能被表示出来就加,表示不出来就不加.
你可能会举出一个反例:按照权值从小到大排序后要加入向量 $x,$ 但是后面有若干向量 $a,b,c,d...$ 能表示出 $x,$ 而 $x$ 却表示不出它们,你可能会说最优解法是加入后面那几个,而不加入 $x.$
然而,你可以列一个等式,就是 $a\times x_{1}+b\times x_{2}+c\times x_{3}....=x,$ 将 $x$ 移到左面,随便一个向量移到右面,变成 $a\times x_{1}+b\times x_{2}-x....=c\times x_{3}.$
而 $x$ 的代价显然要小于 $c,$ 所以我们上述的贪心策略是正确的.

#include <cstdio>
#include <algorithm>
#define N 600
#define eps 1e-5
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
struct Node
{
int w;
long double a[N];
}p[N];
bool cmp(Node a,Node b)
{
return a.w<b.w;
}
int n,m;
int mark[N];
int main()
{
int i,j;
// setIO("input");
scanf("%d%d",&n,&m);
for(i=1;i<=n;++i)
{
for(j=1;j<=m;++j)
{
double c;
scanf("%lf",&c);
p[i].a[j]=(long double) c;
}
}
for(i=1;i<=n;++i) scanf("%d",&p[i].w);
sort(p+1,p+1+n,cmp);
int ans=0, cnt=0, k;
for(i=1;i<=n;++i)
{
for(j=1;j<=m;++j)
{
if(p[i].a[j]>=-eps&&p[i].a[j]<=eps) continue;
if(!mark[j])
{
mark[j]=i,ans+=p[i].w,++cnt;
break;
}
else
{
long double div=(long double)p[i].a[j]/p[mark[j]].a[j];
for(k=j;k<=m;++k)
{
p[i].a[k]=(long double)(p[i].a[k]-(long double)div*p[mark[j]].a[k]);
}
}
}
}
printf("%d %d\n",cnt,ans);
return 0;
}

  

BZOJ 4004: [JLOI2015]装备购买 高斯消元解线性基的更多相关文章

  1. BZOJ 4004 JLOI2015 装备购买 高斯消元+线性基

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4004 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装 ...

  2. BZOJ 4004: [JLOI2015]装备购买 [高斯消元同余 线性基]

    和前两(一)题一样,不过不是异或方程组了..... 然后bzoj的新数据是用来卡精度的吧..... 所有只好在模意义下做啦 只是巨慢无比 #include <iostream> #incl ...

  3. BZOJ4269再见Xor——高斯消元解线性基

    题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两 ...

  4. 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基

    题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...

  5. 【bzoj2115】[Wc2011] Xor DFS树+高斯消元求线性基

    题目描述 输入 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图 ...

  6. 【bzoj3105】[cqoi2013]新Nim游戏 高斯消元求线性基

    题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...

  7. 【bzoj4269】再见Xor 高斯消元求线性基

    题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两 ...

  8. HDU3949/AcWing210 XOR (高斯消元求线性基)

    求第k小的异或和,用高斯消元求更简单一些. 1 //用高斯消元求线性基 2 #include<bits/stdc++.h> 3 using namespace std; 4 #define ...

  9. bzoj 4004: [JLOI2015]装备购买 拟阵 && 高消

    4004: [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 337  Solved: 139[Submit][Status ...

随机推荐

  1. Luogu P2495 [SDOI2011]消耗战

    题目 我们可以很快的想到一个单次\(O(n)\)的dp. 然后我们注意到这个dp有很多无用的操作,比如一条没有关键点的链可以直接去掉. 所以我们可以尝试一次dp中只管那些有用的点. 题目给的关键点显然 ...

  2. Java 注解(原理及其使用)

    一.注解(annotation)介绍 Java在JDK5中引入源代码的注解机制. 1.什么是注解? 注解为代码添加了元数据,元数据是关于数据的组织.数据域及其关系的说明信息. 更通俗的说,注解为程序元 ...

  3. 【已解决】Field injection is not recommended和Could not autowired. No beans of 'xxx' type found.

    目录 问题 解决办法 备注 问题 在项目中,我们使用Spring的@Autowired注解去引入其他类时有时候阿里的编码规约插件就会提示:"Field injection is not re ...

  4. spring-cloud 学习二 服务发现

    注册中心服务发现的例子 添加module pom文件如下 <?xml version="1.0" encoding="UTF-8"?> <pr ...

  5. mybatis调用java类

    在mybatis的映射xml文件调用java类的方法: 使用的是OGNL表达式,表达式格式为:${@prefix@methodName(传递参数名称)} 1.如下代码所示:方法必须为静态方法:以下我只 ...

  6. Comparable内部比较器 和 Comparator外部比较器

    1:Comparable a:基本数据类型封装类都继承了Comparable接口 b:TreeSet 和TreeMap集合默认是按照自然顺序排序的 c:继承类中实现compareTo()方法,在类内部 ...

  7. PowerBI 实现不同角色看到内容不同支持动态权限管理

    首先,在PowerBIDesktop中进行设计,先设计一个权限表: 具体权限如下: 也就是说,这些用户账号在PowerBIService登录时,会分别代表这些用户,接下来会使用一个很重要的动态函数:U ...

  8. ptf转图片

    1.spire 官方的有水印,通过引用 //private readonly static PdfDocument doc = new PdfDocument(); //public static S ...

  9. 输入列号得到excel对应的字母列

    zexcel_cell_column 类型是INT4 FUNCTION ZGET_EXCEL_COL. *"----------------------------------------- ...

  10. js小功能3:一个简单的计算器功能

    html: <input type='text' id='txt1' /> <select id='select'> <option value='+'>+< ...