子串
(substring.cpp/c/pas)
【问题描述】 有两个仅包含小写英文字母的字符串 A 和 B。现在要从字符串 A 中取出 k 个 互不重 叠 的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一 个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出 的位置不同也认为是不同的方案。

【输入格式】 输入文件名为 substring.in。 第一行是三个正整数 n,m,k,分别表示字符串 A 的长度,字符串 B 的长度,以及问 题描述中所提到的 k,每两个整数之间用一个空格隔开。 第二行包含一个长度为 n 的字符串,表示字符串 A。 第三行包含一个长度为 m 的字符串,表示字符串 B。

【输出格式】 输出文件名为 substring.out。 输出共一行,包含一个整数,表示所求方案数。由于答案可能很大,所以这里要求输 出答案对 1,000,000,007 取模的结果。

【思路】

DP+优化

设f[k][i][j]为已经有k段,A串匹配到i,B匹配到j的方案数,则有转移式:

f[k][i][j]=sigma{f[k-1][l][j-1]},A[i]==B[j]&&A[i-1]!=B[j-1]

= sigma{f[k-1][l][j-1]}+f[k][i-1][j-1],A[i]==B[j]&&A[i-1]==B[j-1]

前缀和优化时间,滚动数组优化空间。

【代码】

 #include<cstdio>
#include<cstring>
using namespace std; const int N = 1e3+;
const int M = +;
const int MOD = 1e9+; int f[][N][M],sum[][N][M],n,m,K;
char s1[N],s2[M]; int main() {
scanf("%d%d%d",&n,&m,&K);
scanf("%s",s1+),scanf("%s",s2+);
f[][][]=;
for(int i=;i<=n;i++) sum[][i][]=;
int x=;
for(int k=;k<=K;k++) {
x^=;
memset(sum[x],,sizeof(sum[x]));
memset(f[x],,sizeof(f[x]));
for(int i=;i<=n;i++)
for(int j=;j<=m;j++) {
if(s1[i]==s2[j]) {
f[x][i][j]=sum[x^][i-][j-];
if(s1[i-]==s2[j-]) f[x][i][j]=(f[x][i][j]+f[x][i-][j-])%MOD;
}
sum[x][i][j]=((sum[x][i][j]+sum[x][i-][j])%MOD+f[x][i][j])%MOD;
}
}
int ans=;
for(int i=;i<=n;i++)
ans=(ans+f[x][i][m])%MOD;
printf("%d",ans);
return ;
}

NOIP2015 子串 (DP+优化)的更多相关文章

  1. $[NOIp2015]$ 子串 $dp$

    \(Sol\) 不知道为啥看起来就很\(dp\)的亚子.我们关心的只有\(A\)串当前用到哪一个,\(B\)串已经匹配到哪个位置,已经匹配的被分成了多少段.所以设\(f_{i,j,k,0/1}\)表示 ...

  2. luogu2679 [NOIp2015]子串 (dp)

    设f[i][j][k][b]表示在A串第i位.这是第j组.B串第k位.i号选不选(b=0/1) 那么就有$f[i][j][k][1]=(A[i]==B[k])*(f[i-1][j-1][k][0]+f ...

  3. NOIP2015子串[序列DP]

    题目背景 无 题目描述 有两个仅包含小写英文字母的字符串 A 和 B.现在要从字符串 A 中取出 k 个互不重 叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一 个 ...

  4. LOJ2424 NOIP2015 子串 【DP】*

    LOJ2424 NOIP2015 子串 LINK 题目大意是给你两个序列,在a序列中选出k段不重叠的子串组成b序列,问方案数 首先我们不考虑相邻的两段,把所有相邻段当成一段进行计算 然后设dpi,j, ...

  5. P2679 子串 DP

    P2679 子串 DP 从字符串A中取出\(k\)段子串,按原顺序拼接,问存在多少个方案使拼接的字符串与字符串B相同 淦,又是这种字符串dp 设状态\(ans[i][j][k]\)表示A串位置\(i\ ...

  6. DP 优化方法大杂烩 & 做题记录 I.

    标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...

  7. LCIS tyvj1071 DP优化

    思路: f[i][j]表示n1串第i个与n2串第j个且以j结尾的LCIS长度. 很好想的一个DP. 然后难点是优化.这道题也算是用到了DP优化的一个经典类型吧. 可以这样说,这类DP优化的起因是发现重 ...

  8. 取数字(dp优化)

    取数字(dp优化) 给定n个整数\(a_i\),你需要从中选取若干个数,使得它们的和是m的倍数.问有多少种方案.有多个询问,每次询问一个的m对应的答案. \(1\le n\le 200000,1\le ...

  9. dp优化1——sgq(单调队列)

    该文是对dp的提高(并非是dp入门,dp入门者请先参考其他文章) 有时候dp的复杂度也有点大...会被卡. 这几次blog大多数会讲dp优化. 回归noip2017PJT4.(题目可以自己去百度).就 ...

随机推荐

  1. PHP常见算法-面试篇(1)

    1.冒泡排序 思路分析:在要排序的一组数中,对当前还未排好的序列,从前往后对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒.即,每当两相邻的数比较后发现它们的排序与排序要求相反时,就将 ...

  2. 深入分析 Java 中的中文编码问题(转)

    几种常见的编码格式 为什么要编码 不知道大家有没有想过一个问题,那就是为什么要编码?我们能不能不编码?要回答这个问题必须要回到计算机是如何表示我们人类能够理解的符号的,这些符号也就是我们人类使用的语言 ...

  3. Oracle Database does not provide any supplemental logging, which means that by default LogMiner is not usable

    写在前面,在研究Oracle logmnr 的时候看到 http://www.askmaclean.com/archives/dbms_logmnr-unsupported-sqlredo.html ...

  4. building hadoop2.4.1 on centos7[在centos7上面构建hadoop2.4.1]

    本文介绍在centos7上面通过hadoop2.4.1源码构建hadoop distribution 版本,即hadoop的运行版本. 为何要自己building,而不用Apache的distribu ...

  5. 蜗牛历险记(二) Web框架(下)

    Web框架第三篇--缓存篇 缓存的优劣很大程度上决定了框架的效率,一个有节操的缓存它应该是高效的,利用率高的,具备更多扩展功能的. 一.介绍之前 计算机各个硬件的运行效率是不一样的,CPU>&g ...

  6. 安装ubuntu12.04LTS卡住以及花屏问题

    昨天在XP下用grub4dos安装了ubuntu12.04LTS,总体上还算比较顺利,中途有碰到两个异常问题,解决了记录一下. 问题一:安装过程中读取ISO镜像文件时,卡在"checking ...

  7. poj 1348 Computing (四个数的加减乘除四则运算)

    http://poj.org/problem?id=1348 Computing Time Limit: 1000MS   Memory Limit: 10000K Total Submissions ...

  8. PHP与最丑的后台管理系统

    第二天阿Q到公司还是比较早,同事只有阿梅在,阿Q坐在椅子上旋转来旋转去,有点像个小孩子.公司有书柜,书柜上放了好几本很新的php的书,.net的书反倒比较少而且显得老旧.阿Q起身走过去拿了本php翻了 ...

  9. php多线程thread开发与应用的例子

    Php多线程的使用,首先需要PHP5.3以上版本,并安装pthreads PHP扩展,可以使PHP真正的支持多线程,扩展如何安装请自行百度 PHP扩展下载:https://github.com/kra ...

  10. SDUT 1646 Complicated Expressions

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1646 题意 : 话说我根本没读题,,,因为实在 ...