[notes] ImageNet Classification with Deep Convolutional Neual Network
Paper:
ImageNet Classification with Deep Convolutional Neual Network
Achievements:
The model addressed by Alex etl.
achieved top-1 and top-5 test error rate of
37.5% and
17.0% of classifying the 1.2 million high-resolution images in the
ImageNet LSVRC-2010 contest into the 1000 different classes.
Model Architecture:
model architecture plot:
contains eight learned layers five convolutional and
three fully-connected.
The kernels of the second, fourth, and fifth convolutional layers are connected only to those kernel maps in the previous layer which reside
on the same GPU. The kernels of the third convolutional layer are connected to all kernel maps in the second layer.
Response-normalization layers follow the
first and second convolutional layers.
Max-pooling layers, of the kind described in Section 3.4,
follow both response-normalization layers as well as the fifth convolutional layer. The
ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.
Interesting Points:
ReLU Nonlinearity: speed-up, six times faster than an equivalent network with tanh neurons.
Overlapping Pooling: enhance accuracy and prevent overfitting, reduces the top-1 and top-5 error rates by 0.4% and 0.3%; training model with
overlapping pooling find it slightly more difficult to overfit.
Dropout:prevent overfitting, reduces complex co-adaptations of neurons, since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to learn more robust
features that are useful in conjunction with many different random subsets of the other neurons.
[notes] ImageNet Classification with Deep Convolutional Neual Network的更多相关文章
- 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...
- Paper: ImageNet Classification with Deep Convolutional Neural Network
本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用. 1.数据集 ...
- ImageNet Classification with Deep Convolutional Neural Network(转)
这篇论文主要讲了CNN的很多技巧,参考这位博主的笔记:http://blog.csdn.net/whiteinblue/article/details/43202399 https://blog.ac ...
- 论文笔记《ImageNet Classification with Deep Convolutional Neural Network》
一.摘要 了解CNN必读的一篇论文,有些东西还是可以了解的. 二.结构 1. Relu的好处: 1.在训练时间上,比tanh和sigmod快,而且BP的时候求导也很容易 2.因为是非饱和函数,所以基本 ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- 中文版 ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...
- 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析
<ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...
- ImageNet Classification with Deep Convolutional Neural Networks(译文)转载
ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...
- [论文阅读] ImageNet Classification with Deep Convolutional Neural Networks(传说中的AlexNet)
这篇文章使用的AlexNet网络,在2012年的ImageNet(ILSVRC-2012)竞赛中获得第一名,top-5的测试误差为15.3%,相比于第二名26.2%的误差降低了不少. 本文的创新点: ...
随机推荐
- 学习笔记-记ActiveMQ学习摘录与心得(一)
这两天在看开源的MQ技术,趁着晚上安静,把这两天学的东西摘录下.在公司学东西效率真心捉鸡,心里总觉得别扭,拿了公司的钱不干活还在那学习,表示心情不淡定,效率不行啊...晚上时间是我的,下班还是蛮开心的 ...
- 把AS代码链接到fla文件
在属性里找到类,输入AS脚本的文件名然后点击右边的编辑就可以打开编辑AS脚本的界面,下面为链接代码. package { import flash.display.MovieClip; public ...
- Apache 多站点(虚拟主机)
普遍 apache多站点(灰色(连接一起的红色)字体 为命令) 编辑文件:httpd.conf 找到以下内容: # Virtual hosts # Include /private/etc/apach ...
- The largest prime factor(最大质因数)
1. 问题: The prime factors of 13195 are 5, 7, 13 and 29.What is the largest prime factor of the number ...
- 随机List中数据的排列顺序
把1000个数随机放到1000个位置. 这也就是一个简单的面试题.觉得比较有意思.就顺带写一下 举个简单的例子吧. 学校统一考试的时候 有 1000个人,然后正好有 1000个考试位置,需要随机排列 ...
- Android Learning:多线程与异步消息处理机制
在最近学习Android项目源码的过程中,遇到了很多多线程以及异步消息处理的机制.由于之前对这块的知识只是浅尝辄止,并没有系统的理解.但是工程中反复出现让我意识到这个知识的重要性.所以我整理出这篇博客 ...
- 去除UINavigationBar默认透明度的方法
UINavigationbar的属性translucent,用来控制导航条的透明度的: iOS7+版本后,navigationbar的translucent属性默认为YES,及默认带有透明度 [sel ...
- 【Tools】Apache Maven 入门篇 ( 上 )
作者:George Ma 写这个 maven 的入门篇是因为之前在一个开发者会的动手实验中发现挺多人对于 maven 不是那么了解,所以就有了这个想法.这个入门篇分上下两篇.本文着重动手,用 mave ...
- 解压Windows的install.wim文件
转自无需软件,解压Win8/Win8.1的install.wim文件 一.检查镜像版本: 镜像中包含多个版本,需要确认自己需要的版本,我的镜像路径是"F:\win8.1\sources\in ...
- keil教程
KEIL C51标准C编译器为8051微控制器的软件开发提供了C语言环境,但是界面是英文的好多初学者看很多教程都是一头雾水,这个相对简单的教程.KEIL C51编译器的功能不断增强,使你可以更加贴近C ...