[notes] ImageNet Classification with Deep Convolutional Neual Network
Paper:
ImageNet Classification with Deep Convolutional Neual Network
Achievements:
The model addressed by Alex etl.
achieved top-1 and top-5 test error rate of
37.5% and
17.0% of classifying the 1.2 million high-resolution images in the
ImageNet LSVRC-2010 contest into the 1000 different classes.
Model Architecture:
model architecture plot:
contains eight learned layers five convolutional and
three fully-connected.
The kernels of the second, fourth, and fifth convolutional layers are connected only to those kernel maps in the previous layer which reside
on the same GPU. The kernels of the third convolutional layer are connected to all kernel maps in the second layer.
Response-normalization layers follow the
first and second convolutional layers.
Max-pooling layers, of the kind described in Section 3.4,
follow both response-normalization layers as well as the fifth convolutional layer. The
ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.
Interesting Points:
ReLU Nonlinearity: speed-up, six times faster than an equivalent network with tanh neurons.
Overlapping Pooling: enhance accuracy and prevent overfitting, reduces the top-1 and top-5 error rates by 0.4% and 0.3%; training model with
overlapping pooling find it slightly more difficult to overfit.
Dropout:prevent overfitting, reduces complex co-adaptations of neurons, since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to learn more robust
features that are useful in conjunction with many different random subsets of the other neurons.
[notes] ImageNet Classification with Deep Convolutional Neual Network的更多相关文章
- 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...
- Paper: ImageNet Classification with Deep Convolutional Neural Network
本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用. 1.数据集 ...
- ImageNet Classification with Deep Convolutional Neural Network(转)
这篇论文主要讲了CNN的很多技巧,参考这位博主的笔记:http://blog.csdn.net/whiteinblue/article/details/43202399 https://blog.ac ...
- 论文笔记《ImageNet Classification with Deep Convolutional Neural Network》
一.摘要 了解CNN必读的一篇论文,有些东西还是可以了解的. 二.结构 1. Relu的好处: 1.在训练时间上,比tanh和sigmod快,而且BP的时候求导也很容易 2.因为是非饱和函数,所以基本 ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- 中文版 ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...
- 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析
<ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...
- ImageNet Classification with Deep Convolutional Neural Networks(译文)转载
ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...
- [论文阅读] ImageNet Classification with Deep Convolutional Neural Networks(传说中的AlexNet)
这篇文章使用的AlexNet网络,在2012年的ImageNet(ILSVRC-2012)竞赛中获得第一名,top-5的测试误差为15.3%,相比于第二名26.2%的误差降低了不少. 本文的创新点: ...
随机推荐
- __unset()魔术方法 删除类内私有属性
__unset()魔术方法 删除私有属性 unset()对共有属性进行删除 可通过__unset()魔术方法对私有属性进行操作 当在类外部执行unset()函数时,自动执行类内__unset()魔术方 ...
- 隐藏input边框(ie6、ie7)
去掉元素的边框,我们一贯使用border:none; 但在ie6.ie7下的input[type=text]元素,并没有去掉. 两种解决方案: 1. border:none; 并设置背景backgro ...
- iOS+Swift: 使用MessageUI.framework发送短信
在iOS中, 可以使用MessageUI.framework框架发送短信, 步骤如下: 代码下载http://git.oschina.net/yao_yu/swift_cnblogs_samples/ ...
- 百度云推送 pem
1. p12证书导出 在钥匙串访问中选中推送证书,导出为个人信息交换文件(.p12格式). 选择文件格式.文件名和保存路径. 输入导出密码. 2. pem证书生成 将p12证书文件转换成pem证书文件 ...
- iOSシステム構成の纏め
iOSのアーキテクチャ a) iOSのアーキテクチャは階層化されている最上位レベルでは.iOSはそれが稼働しているハードウェアとアプリケーションの間の仲介役を果たします.アプリケーションが ...
- 转载:用Dreamweave cs 5.5+PhoneGap+Jquery Mobile搭建移动开发
转载地址:http://blog.csdn.net/haha_mingg/article/details/7900221 移动设备应用开发有多难,只要学会HTML5+Javascript就可以.用Dr ...
- Immutable Object模式
多线程共享变量的情况下,为了保证数据一致性,往往需要对这些变量的访问进行加锁.而锁本身又会带来一些问题和开销.Immutable Object模式使得我们可以在不使用锁的情况下,既保证共享变量访问的线 ...
- Android 隐式意图 让用户选择一个浏览器访问网址
Intent intent = new Intent(); intent.setAction(Intent.ACTION_VIEW); intent.setData(Uri.parse("h ...
- 自定义JSON配置器
比如要写个专门处理float类型的方法,然后注册到JSON配置器中,具体如下: 配置器代码如下: import java.math.RoundingMode; import java.text.Num ...
- asp.net 类库中获取session c#类中获取session
asp.net 类库中获取session c#类中获取session 1. 先引入命名空间 using System.Web; using System.Web.SessionState; 在使用H ...