Paper:

ImageNet Classification with Deep Convolutional Neual Network





Achievements:

The model addressed by Alex etl.
achieved top-1 and top-5 test error rate of
37.5% and
17.0% of classifying the 1.2 million high-resolution images in the
ImageNet LSVRC-2010 contest into the 1000 different classes.

Model Architecture:

model architecture plot:

contains eight learned layers five convolutional and
three fully-connected.

The kernels of the second, fourth, and fifth convolutional layers are connected only to those kernel maps in the previous layer which reside
on the same GPU. The kernels of the third convolutional layer are connected to all kernel maps in the second layer.

 

Response-normalization layers follow the
first and second convolutional layers.
Max-pooling layers, of the kind described in Section 3.4,
follow both response-normalization layers as well as the fifth convolutional layer. The
ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.





Interesting Points:

ReLU Nonlinearity: speed-up, six times faster than an equivalent network with tanh neurons.

Overlapping Pooling: enhance accuracy and prevent overfitting, reduces the top-1 and top-5 error rates by 0.4% and 0.3%; training model with
overlapping pooling find it slightly more difficult to overfit.

Dropout:prevent overfitting, reduces complex co-adaptations of neurons, since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to learn more robust
features that are useful in conjunction with many different random subsets of the other neurons.

[notes] ImageNet Classification with Deep Convolutional Neual Network的更多相关文章

  1. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  2. Paper: ImageNet Classification with Deep Convolutional Neural Network

    本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用. 1.数据集 ...

  3. ImageNet Classification with Deep Convolutional Neural Network(转)

    这篇论文主要讲了CNN的很多技巧,参考这位博主的笔记:http://blog.csdn.net/whiteinblue/article/details/43202399 https://blog.ac ...

  4. 论文笔记《ImageNet Classification with Deep Convolutional Neural Network》

    一.摘要 了解CNN必读的一篇论文,有些东西还是可以了解的. 二.结构 1. Relu的好处: 1.在训练时间上,比tanh和sigmod快,而且BP的时候求导也很容易 2.因为是非饱和函数,所以基本 ...

  5. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  6. 中文版 ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...

  7. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  8. ImageNet Classification with Deep Convolutional Neural Networks(译文)转载

    ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...

  9. [论文阅读] ImageNet Classification with Deep Convolutional Neural Networks(传说中的AlexNet)

    这篇文章使用的AlexNet网络,在2012年的ImageNet(ILSVRC-2012)竞赛中获得第一名,top-5的测试误差为15.3%,相比于第二名26.2%的误差降低了不少. 本文的创新点: ...

随机推荐

  1. [转] 博闻强识:了解CSS中的@ AT规则 ---张鑫旭

    by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=4900 大家可能在CS ...

  2. php练习——打印半金字塔、金字塔、空心金字塔、菱形、空心菱形

    半金字塔 金字塔 空心金字塔 菱形     空心菱形

  3. php 执行linux 命令函数

    php的内置函数exec,system都可以调用系统命令(shell命令),当然还有passthru,escapeshellcmd等函数. 在很多时候利用php的exec,system等函数调用系统命 ...

  4. PM【terminal】

    More Knowledge More Performance More Time 资料模组化 以知识管理为基础的项目管理 规范:ethic

  5. ubuntu 下截图工具的使用

    我个人觉得,ubuntu自带的截图工具功能就不错.具体使用如下: 在ubuntu下的系统设置中找到硬盘区的“键盘”处,进入该设置界面如下: 选择标签“快捷键”,进入新设置界面如下所示: 之后,你就可以 ...

  6. 工具批处理Demo

    前言:用C语言写一些小型工具时,使用传递参数的方式会比较方便.如GIF文件转换为头文件工具,如果我们需要将某一个文件夹里所有的gif文件都转换为头文件,这时我们用批处理给这个工具传递参数,会方便很多. ...

  7. 虚拟机下linux上网

    一.概述 1. 常见的上网方式 有以下两种: 桥接 NAT(推荐) 有关虚拟机几种不同联网方式的讲述,可以参考VMware网络选项分析 通常的配置步骤: <1> 配置PC端 <2&g ...

  8. 编译hadoop版的hello,world

    cd ~/src mkdir classes javac -classpath ~/hadoop-/hadoop--core.jar WordCount.java -d classes jar -cv ...

  9. Dataguard配置前提条件

    Data Guard配置前提条件 配置Data Guard必须保证以下前提条件: 1.Data Guard是Oracle企业版的组件.Oracle标准版里没有这个控件.所以Data Guard配置所使 ...

  10. Java项目中使用配置文件配置

    private String readConfig() { Properties p = new Properties(); InputStream in = getClass().getClassL ...