HDU——1788 Chinese remainder theorem again
再来一发水体,是为了照应上一发水题。
再次也特别说明一下,白书上的中国剩余定理的模板不靠谱。
老子刚刚用柏树上的模板交上去,简直wa出翔啊。
下面隆重推荐安叔版同余方程组的求解方法。
反正这个版本十分强大,适用于各种情况。
题目的意思是告诉你I和a,接下来有I个mi,它所对应的余数ai=mi-a;
这里我用白书上的模板交上去就wa了哦,用这个版本吧。
#include <iostream>
#include <cstdio>
#define ll long long
using namespace std; ll c[11],m[11],n,t; void exgcd(ll A,ll B,ll& d,ll& x,ll& y)
{
if (B==0) { x=1,y=0,d=A; }
else { exgcd(B,A%B,d,y,x); y-=A/B*x; }
} ll china()
{
bool ans=true;
ll am=m[1],d,y0,z0;
ll ac=c[1];
for (ll i=2; i<=n; i++)
{
exgcd(am,m[i],d,y0,z0);
if ((ac-c[i])%d!=0)
{
ans=false;
break;
}
y0=(c[i]-ac)/d*y0;
y0=((y0%(m[i]/d))+(m[i]/d))%(m[i]/d);
ac=am*y0+ac,am=am/d*m[i],ac=(ac%am+am)%am;
}
if (ac==0) ac=am;//这里是题目说明了整数,不能为0哦。
return ac;
} int main()
{
while (cin>>n>>t && (n|t))
{
for (ll i=1; i<=n; i++) scanf("%I64d",&m[i]),c[i]=m[i]-t;
cout<<china()<<endl;
}
return 0;
}
HDU——1788 Chinese remainder theorem again的更多相关文章
- hdu 1788 Chinese remainder theorem again(最小公倍数)
Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...
- HDU 1788 Chinese remainder theorem again
题目链接 题意 : 中文题不详述. 思路 : 由N%Mi=(Mi-a)可得(N+a)%Mi=0;要取最小的N即找Mi的最小公倍数即可. #include <cstdio> #include ...
- HDU 1788 Chinese remainder theorem again 中国剩余定理
题意: 给定n,AA 以下n个数m1,m2···mn 则有n条方程 res % m1 = m1-AA res % m2 = m2-AA 问res的最小值 直接上剩余定理,嘿嘿 #include< ...
- DHU 1788 Chinese remainder theorem again 中国剩余定理
Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 ...
- Chinese remainder theorem again(中国剩余定理)
C - Chinese remainder theorem again Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:% ...
- HDU1788 Chinese remainder theorem again【中国剩余定理】
题目链接: pid=1788">http://acm.hdu.edu.cn/showproblem.php?pid=1788 题目大意: 题眼下边的描写叙述是多余的... 一个正整N除 ...
- 中国剩余定理(Chinese Remainder Theorem)
我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times \cdots \tim ...
- 【数论】【中国剩余定理】【LCM】hdu1788 Chinese remainder theorem again
根据题目容易得到N%Mi=Mi-a. 那么可得N%Mi+a=Mi. 两侧同时对Mi取余,可得(N+a)%Mi=0. 将N+a看成一个变量,就可以把原问题转化成求Mi的LCM,最后减去a即可. #inc ...
- Chinese remainder theorem
https://en.wikipedia.org/wiki/Chinese_remainder_theorem http://planetmath.org/ChineseRemainderTheore ...
随机推荐
- 柴柴随笔第三篇:安装虚拟机以及Linux基础入门
虚拟机的安装 老师提供的作业指南给了我莫大的帮助,一步一步按着其中操作提示和网址链接,我首先下好了VM,也创建好了自己的第一台虚拟机. 接着按照步骤安装了Ubuntu到我的虚拟机. 到此,一切都顺风顺 ...
- 20155315 2016-2017-2 《Java程序设计》第十周学习总结
学习目标 了解计算机网络基础 掌握Java Socket编程 理解混合密码系统 掌握Java 密码技术相关API的使用 学习资源 Java和Android开发学习指南(第二版)(EPUBIT,,Jav ...
- SSM框架及例子(转)
SSM 手把手教你整合最优雅SSM框架:SpringMVC + Spring + MyBatis 博客地址:http://blog.csdn.net/qq598535550/article/detai ...
- [agc002D]Stamp Rally-[并查集+整体二分]
Description 题目大意:给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的边的最大编号最小.n, ...
- 【LG4841】城市规划
[LG4841]城市规划 题面 洛谷 题解 记\(t_i\)表示\(i\)个点的无向图个数,显然\(t_i=2^{C_i^2}\). 设\(f_i\)表示\(i\)个点的无向连通图个数,容斥一下,枚举 ...
- Python Web部署方式全汇总
学过PHP的都了解,php的正式环境部署非常简单,改几个文件就OK,用FastCgi方式也是分分钟的事情.相比起来,Python在web应用上的部署就繁杂的多,主要是工具繁多,主流服务器支持不足. 在 ...
- mysql数据导到本地
需求: 把mysql查询结果导出到txt(其他格式亦可),放在本地,供下一步使用 首先网上查了下,select * from driver into outfile 'a.txt'; 前面是你的sql ...
- 422. Length of Last Word【LintCode java】
Description Given a string s consists of upper/lower-case alphabets and empty space characters ' ', ...
- 从零开始的Python学习Episode 7——文件基本操作
文件基本操作 一.打开文件 f = open('11','r')#open('file path','mode') 创建一个文件对象 文件有多种打开模式: 1. 'r':新建一个文件对象以只读方式打开 ...
- hive 2以上版本启动异常 Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient
hive2.0以上的版本启动时 抛出 “Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreCli ...