再来一发水体,是为了照应上一发水题。

再次也特别说明一下,白书上的中国剩余定理的模板不靠谱。

老子刚刚用柏树上的模板交上去,简直wa出翔啊。

下面隆重推荐安叔版同余方程组的求解方法。

反正这个版本十分强大,适用于各种情况。

题目的意思是告诉你I和a,接下来有I个mi,它所对应的余数ai=mi-a;

这里我用白书上的模板交上去就wa了哦,用这个版本吧。

#include <iostream>
#include <cstdio>
#define ll long long
using namespace std; ll c[11],m[11],n,t; void exgcd(ll A,ll B,ll& d,ll& x,ll& y)
{
if (B==0) { x=1,y=0,d=A; }
else { exgcd(B,A%B,d,y,x); y-=A/B*x; }
} ll china()
{
bool ans=true;
ll am=m[1],d,y0,z0;
ll ac=c[1];
for (ll i=2; i<=n; i++)
{
exgcd(am,m[i],d,y0,z0);
if ((ac-c[i])%d!=0)
{
ans=false;
break;
}
y0=(c[i]-ac)/d*y0;
y0=((y0%(m[i]/d))+(m[i]/d))%(m[i]/d);
ac=am*y0+ac,am=am/d*m[i],ac=(ac%am+am)%am;
}
if (ac==0) ac=am;//这里是题目说明了整数,不能为0哦。
return ac;
} int main()
{
while (cin>>n>>t && (n|t))
{
for (ll i=1; i<=n; i++) scanf("%I64d",&m[i]),c[i]=m[i]-t;
cout<<china()<<endl;
}
return 0;
}

  

HDU——1788 Chinese remainder theorem again的更多相关文章

  1. hdu 1788 Chinese remainder theorem again(最小公倍数)

    Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...

  2. HDU 1788 Chinese remainder theorem again

    题目链接 题意 : 中文题不详述. 思路 : 由N%Mi=(Mi-a)可得(N+a)%Mi=0;要取最小的N即找Mi的最小公倍数即可. #include <cstdio> #include ...

  3. HDU 1788 Chinese remainder theorem again 中国剩余定理

    题意: 给定n,AA 以下n个数m1,m2···mn 则有n条方程 res % m1 = m1-AA res % m2 = m2-AA 问res的最小值 直接上剩余定理,嘿嘿 #include< ...

  4. DHU 1788 Chinese remainder theorem again 中国剩余定理

    Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  5. Chinese remainder theorem again(中国剩余定理)

    C - Chinese remainder theorem again Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:% ...

  6. HDU1788 Chinese remainder theorem again【中国剩余定理】

    题目链接: pid=1788">http://acm.hdu.edu.cn/showproblem.php?pid=1788 题目大意: 题眼下边的描写叙述是多余的... 一个正整N除 ...

  7. 中国剩余定理(Chinese Remainder Theorem)

    我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \tim ...

  8. 【数论】【中国剩余定理】【LCM】hdu1788 Chinese remainder theorem again

    根据题目容易得到N%Mi=Mi-a. 那么可得N%Mi+a=Mi. 两侧同时对Mi取余,可得(N+a)%Mi=0. 将N+a看成一个变量,就可以把原问题转化成求Mi的LCM,最后减去a即可. #inc ...

  9. Chinese remainder theorem

    https://en.wikipedia.org/wiki/Chinese_remainder_theorem http://planetmath.org/ChineseRemainderTheore ...

随机推荐

  1. ptyhon基础篇 day1

    1.变量 print('helloworld!') name = 'alex' name2 = 'jack' print(name,name2) 2.input #用户输入 username = in ...

  2. Docker入门篇(二)之docker的单主机网络

    Docker 安装时会自动在host上创建三个网络,我们可用 docker network ls命令查看: [root@localhost ~]# docker network ls NETWORK ...

  3. NTP(Network Time Protocol)

    Linux NTP配置详解 (Network Time Protocol) http://www.ntp.org/ Meinberg NTP packages provide a GUI instal ...

  4. JUC——线程同步锁(锁处理机制简介)

    锁处理机制简介 juc的开发框架解决的核心问题是并发访问和数据安全操作问题,当进行并发访问的时候如果对于锁的控制不当,就会造成死锁这样的阻塞问题. 为了解决这样的缺陷,juc里面重新针对于锁的概念进行 ...

  5. 时序数据库InfluxDB

    在系统服务部署过后,线上运行服务的稳定性是系统好坏的重要体现,监控系统状态至关重要,经过调研了解,时序数据库influxDB在此方面表现优异. influxDB介绍 时间序列数据是以时间字段为每行数据 ...

  6. EXE模块说明

    EXE模块是fastCMS系统内非常优秀的一个功能模块,它将一些操作打包成可执行单元.它具有以下优势: 1)功能明确.便于维护. 2)发起端可获取EXE模块的执行结果. 3)对于不需要执行结果的请求, ...

  7. less 语法特性翻译稿 - 特性快速预览部分

    原文地址 http://lesscss.cn/features/ 概述 作为CSS的一种扩展语法,Less不仅仅向后兼容CSS,新的特性也是基于CSS现有语法.这使得学习Less变得容易,如果你有所怀 ...

  8. Kickstart 安装centos7

    以前是怎么安装系统的 光盘(ISO文件,光盘的镜像文件)===>每一台物理机都得给一个光驱,如果用外置光驱的话,是不是每台机器都需要插一下 U盘:ISO镜像刻录到U盘==>需要每台机器都需 ...

  9. ORA-28000: the account is locked 查哪个具体ip地址造成

    查系统默认的策略,连续验证10次错误帐户即会被锁 SQL> select resource_name, limit from dba_profiles where profile='DEFAUL ...

  10. kylin-note

    http://www.cnblogs.com/tgzhu/category/915975.html https://sdk.cn/news/3566 https://www.linuxidc.com/ ...