在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大。

题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积

/**************************************************************
Problem: 1069
User: walfy
Language: C++
Result: Accepted
Time:892 ms
Memory:1360 kb
****************************************************************/ //#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 10007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; struct point{
ll x,y;
};
point p[N],s[N];
int top,n;
ll dir(point p1,point p2,point p3)
{
return (p3.x-p2.x)*(p2.y-p1.y)-(p3.y-p2.y)*(p2.x-p1.x);
}
ll dis(point a,point b)
{
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
ll area(point p1,point p2,point p3)
{
return fabs(dir(p1,p2,p3));
}
bool cmp(point a,point b)
{
ll te=dir(p[],a,b);
if(te<)return ;
if(te==&&dis(p[],a)<dis(p[],b))return ;
return ;
}
void graham()
{
int pos,minx,miny;
minx=miny=inf;
for(int i=;i<n;i++)
{
if(p[i].x<minx||(p[i].x==minx&&p[i].y<miny))
{
minx=p[i].x;
miny=p[i].y;
pos=i;
}
}
swap(p[],p[pos]);
sort(p+,p+n,cmp);
p[n]=p[];
s[]=p[],s[]=p[],s[]=p[];
top=;
for(int i=;i<=n;i++)
{
while(dir(s[top-],s[top],p[i])>=&&top>=)top--;
s[++top]=p[i];
}
ll ans=;
for(int i=;i<top;i++)
{
int j,a1=(i+)%top,a2=(i+)%top;
for(j=(i+)%top;j!=i;j=(j+)%top)
{
while(a1!=j&&area(s[(a1+)%top],s[i],s[j])>=area(s[a1],s[i],s[j]))a1=(a1+)%top;
while(a2!=i&&area(s[(a2+)%top],s[i],s[j])>=area(s[a2],s[i],s[j]))a2=(a2+)%top;
ans=max(ans,area(s[a1],s[i],s[j])+area(s[a2],s[i],s[j]));
}
}
printf("%.3f\n",1.0*ans/);
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%lld%lld",&p[i].x,&p[i].y);
graham();
return ;
}
/******************** ********************/

bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积的更多相关文章

  1. [BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3669  Solved: 1451[Submit][Sta ...

  2. luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳

    LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...

  3. bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳

    题目大意: 二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大 题解: 很容易发现这四个点一定在凸包上 所以我们枚举一条边再旋转卡壳确定另外的两个点即可 旋(xuan2)转(zhua ...

  4. hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)

    链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissio ...

  5. BZOJ1069 SCOI2007 最大土地面积 凸包、旋转卡壳

    传送门 在这里假设可以选择两个相同的点吧-- 那么选出来的四个点一定会在凸包上 建立凸包,然后枚举这个四边形的对角线.策略是先枚举对角线上的一个点,然后沿着凸包枚举另一个点.在枚举另一个点的过程中可以 ...

  6. bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2277  Solved: 853[Submit][Stat ...

  7. 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳

    因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...

  8. [SCOI2007]最大土地面积(旋转卡壳)

    首先,最大四边形的四个点一定在凸包上 所以先求凸包 有个结论,若是随机数据,凸包包括的点大约是\(\log_2n\)个 然鹅,此题绝对不会这么轻松,若\(O(n^4)\)枚举,只有50分 所以还是要想 ...

  9. UVA 4728 Squares(凸包+旋转卡壳)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17267 [思路] 凸包+旋转卡壳 求出凸包,用旋转卡壳算出凸包的直 ...

随机推荐

  1. 170519、FastDFS分布式文件系统的安装与使用(单节点)

    基于 于 D Do ubbo 的分布 式系统架构 视频 教程 高 级篇S FastDFS 分布 式 文件系统的安装与使用 (单 节点)跟踪 服务器 : 192.168.4.12 21 1 (edu- ...

  2. html5新属性contenteditable 对于那些不可编辑的标签,现在都可以编辑了

    contenteditable = true 表示该html标签的内容可以编辑,对于那些不可编辑的标签,现在都可以编辑了.

  3. Asp.net读取和写入txt文件方法(实例)!

    Asp.NET读取和写入txt文件方法(实例)! [程序第一行的引入命名空间文件 - 参考] System; using System.Collections; using System.Config ...

  4. Spring源码学习之IOC实现原理(二)-ApplicationContext

    一.Spring核心组件结构 总的来说Spring共有三个核心组件,分别为Core,Context,Bean.三大核心组件的协同工作主要表现在 :Bean是包装我们应用程序自定义对象Object的,O ...

  5. HDU 4247 Pinball Game 3D(cdq 分治+树状数组+动态规划)

    Pinball Game 3D Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. Linux eventfd分析

    2017-07-20 eventfd在linux中是一个较新的进程通信方式,和信号量等不同的是event不仅可以用于进程间的通信,还可以用户内核发信号给用户层的进程.eventfd在virtIO后端驱 ...

  7. centos shell编程4【分发系统】 服务器标准化 mkpasswd 生成密码的工具 expect讲解 expect传递参数 expect自动同步文件 expect指定host和要同步的文件 expect文件分发系统 expect自动发送密钥脚本 Linux脚本执行方式 第三十八节课

    centos shell编程4[分发系统] 服务器标准化  mkpasswd 生成密码的工具  expect讲解   expect传递参数   expect自动同步文件  expect指定host和要 ...

  8. Teigha.net读写dwg文件显示

    官网:http://www.opendesign.com/ http://www.cnblogs.com/zhanglibo0626/archive/2011/11/04/2236238.html 下 ...

  9. word安装mathtype

    1:window版本的mathtype:https://pan.baidu.com/s/1Yn8kPG9Y9nBPGaotFJaL2Q  ,密码spwm 2:点击exe安装   (安装到c盘,将不会出 ...

  10. springboot 使用model重定向到html模板,对数据进行展示

    1:使用springboot, ,html使用thymeleaf,nekohtml模板 在build.gradle中添加依赖 buildscript { repositories { mavenCen ...