poj1734Sightseeing trip——无向图求最小环
题目:http://poj.org/problem?id=1734
无向图求最小环,用floyd;
在每个k点更新f[i][j]之前,以k点作为直接连到i,j组成一个环的点,这样找一下最小环;
注意必须存直接相连的边,在找环时k点连到i,j的值不能是最短路。
调了一个小时发现把z打成y了......
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,f[][],pre[][],ans,path[],inf=1e9,top;
int sid[][];//真的有必要存直接相连的边
int main()
{
scanf("%d%d",&n,&m);
memset(f,-,sizeof f);
memset(sid,-,sizeof sid);
ans=inf;
for(int i=;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if(f[x][y]==-)//
{
f[x][y]=f[y][x]=z;
pre[x][y]=x;pre[y][x]=y;
sid[x][y]=z;sid[y][x]=z;
}
else
f[x][y]=f[y][x]=sid[x][y]=sid[y][x]=min(f[x][y],z);
}
for(int k=;k<=n;k++)
{
for(int i=;i<k;i++)//找环
for(int j=i+;j<k;j++)
{
// if(k==5)printf("i=%d j=%d ans=%d %d\n",i,j,ans,f[i][j]+sid[i][k]+sid[k][j]);
if(f[i][j]!=-&&sid[i][k]!=-&&sid[k][j]!=-&&ans>f[i][j]+sid[i][k]+sid[k][j])
{
ans=f[i][j]+sid[i][k]+sid[k][j];
// printf("sid[%d][%d]=%d\n",k,j,sid[k][j]);
// printf("ans=%d\n",ans);
// printf("!f[%d][%d]=%d f[%d][%d]=%d\n",i,k,f[i][k],k,j,f[k][j]);
top=;
int t=j;
while(t!=i)
{
path[++top]=t;
t=pre[i][t];
}
path[++top]=i;
path[++top]=k;//前提为k为单出一点
}
}
for(int i=;i<=n;i++)//
for(int j=;j<=n;j++)//
if(f[i][k]!=-&&f[k][j]!=-&&(f[i][j]>f[i][k]+f[k][j]||f[i][j]==-))//
{
// printf("f[%d][%d]=%d f[%d][%d]=%d\n",i,k,f[i][k],k,j,f[k][j]);
f[i][j]=f[i][k]+f[k][j];
pre[i][j]=pre[k][j];
} }
if(ans==inf)printf("No solution.");
else
{
for(int i=;i<=top;i++)
printf("%d ",path[i]);
}
return ;
}
poj1734Sightseeing trip——无向图求最小环的更多相关文章
- B. Shortest Cycle 无向图求最小环
题意: 给定 n 个点,每个点有一个权值a[i],如果a[u]&a[v] != 0,那么就可以在(u,v)之间连一条边,求最后图的最小环(环由几个点构成) 题解:逻辑运算 & 是二进制 ...
- #10072. 「一本通 3.2 例 1」Sightseeing Trip(floyd求最小环+路径)
https://loj.ac/problem/10072 针对无向图 因为Floyd是按照结点的顺序更新最短路的,所以我们在更新最短路之前先找到一个连接点k,当前的点k肯定不存在于已存在的最短路f[i ...
- POJ1734无向图求最小环
题目:http://poj.org/problem?id=1734 方法有点像floyd.若与k直接相连的 i 和 j 在不经过k的情况下已经连通,则有环. 注意区分直接连接和间接连接. * 路径记录 ...
- 【POJ1734】Sightseeing Trip 无向图最小环
题目大意:给定一个 N 个顶点的无向图,边有边权,如果存在,求出该无向图的最小环,即:边权和最小的环,并输出路径. 题解:由于无向图,且节点数较少,考虑 Floyd 算法,在最外层刚开始遍历到第 K ...
- POJ 1734 Sightseeing trip(无向图最小环+输出路径)
题目链接 #include <cstdio> #include <string> #include <cstring> #include <queue> ...
- POJ1734 Sightseeing trip (Floyd求最小环)
学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...
- FLOYD 求最小环
首先 先介绍一下 FLOYD算法的基本思想 设d[i,j,k]是在只允许经过结点1…k的情况下i到j的最短路长度则它有两种情况(想一想,为什么):最短路经过点k,d[i,j,k]=d[i,k,k- ...
- hdu 1599 find the mincost route(无向图的最小环)
find the mincost route Time Limit: 1000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- 2021.11.03 P6175 无向图的最小环问题
2021.11.03 P6175 无向图的最小环问题 P6175 无向图的最小环问题 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 给定一张无向图,求图中一个至少包含 33 ...
随机推荐
- GIT简单使用——多人协作篇
多人协作的工作模式通常是这样:1.首先,可以试图用git push origin <branch-name>推送自己的修改:2.如果推送失败,则因为远程分支比你的本地更新,需要先用git ...
- SQL注入基础入门
一般的WEB架构 SQL注入成因: 用户开启浏览器并连接http://www.xxx.com.位于逻辑层的Web服务器从文件系统中加载脚本将其传递给脚本引擎,脚本引擎负责解析并执行脚本. 脚本使用数据 ...
- FTPHelper类
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.N ...
- A和B是好友,他们经常在空闲时间聊天,A的空闲时间为[a1 ,b1 ],[a2 ,b2 ]..[ap ,bp ]。B的空闲时间是[c1 +t,d1 +t]..[cq +t,dq +t],这里t为B的起床时间。这些时间包括了边界点。B的起床时间为[l,r]的一个时刻。若一个起床时间能使两人在任意时刻聊天,那么这个时间就是合适的,问有多少个合适的起床时间?
// ConsoleApplication5.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<vector> ...
- Project Structure 讲解(转)
项目的左侧面板 项目设置->Project Project Settings -> Modules Sources面板 Paths面板 dependencies面板 Project Set ...
- 题解 P3805 【【模板】manacher算法】
题解 P3805 [[模板]manacher算法] 我们先看两个字符串: ABCCBA ABCDCBA 显然这两字符串是回文的 然而两个串的对称中心的特性不同,第一个串,它的对称中心在两个C中间,然而 ...
- 【题解】CF45G Prime Problem
[题解]CF45G Prime Problem 哥德巴赫板子题? \(\frac{n(n+1)}{2}\)若是质数,则不需要分了. 上式 若是奇数,那么拆成2和另一个数. 上式 若是偶数吗,直接\(O ...
- 使用nginx+nginx-rtmp-module+ffmpeg搭建流媒体服务器
参考: 1,使用nginx+nginx-rtmp-module+ffmpeg搭建流媒体服务器笔记(一)http://blog.csdn.net/xdwyyan/article/details/4319 ...
- client , offset , scroll 系列 及百度导航栏案例
1. client 系列 示例 : <!DOCTYPE html> <html> <head> <meta charset="UTF-8" ...
- ZOJ - 4016 Mergeable Stack 【LIST】
题目链接 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4016 题意 模拟栈的三种操作 第一种 push 将指定元素压入指 ...