UVA11149 Power of Matrix —— 矩阵倍增、矩阵快速幂
题目链接:https://vjudge.net/problem/UVA-11149


题意:
给出矩阵A,求出A^1 + A^2 …… + A^k 。
题解:
1.可知:A^1 + A^2 …… + A^k = (1+A^k/2)*(A^1 + A^2 …… + A^k/2)+ (k%2?A^k:0)。
2.根据上述式子,可二分对其求解。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
//const int MOD = 1e9+7;
const int MAXN = 1e6+; const int MOD = ;
int Size;
struct MA
{
LL mat[][];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += 1LL*x.mat[i][k]*y.mat[k][j]%MOD, ret.mat[i][j] %= MOD;;
return ret;
} MA add(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
ret.mat[i][j] = x.mat[i][j]+y.mat[i][j], ret.mat[i][j] %= MOD;
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} MA solve(MA x, int k)
{
if(k==) return x;
MA s;
s.init();
s = mul(add(s, qpow(x, k/)), solve(x, k/));
if(k%) s = add(s, qpow(x, k));
return s;
} int main()
{
int n, k;
while(scanf("%d%d", &n,&k)&&n)
{
MA s;
Size = n;
memset(s.mat, , sizeof(s.mat));
for(int i = ; i<n; i++)
for(int j = ; j<n; j++)
{
scanf("%lld", &s.mat[i][j]);
s.mat[i][j] %= MOD;
} s = solve(s, k);
for(int i = ; i<n; i++)
{
for(int j = ; j<n; j++)
printf("%lld%s", s.mat[i][j], j==n-?"\n":" ");
}
printf("\n");
}
}
UVA11149 Power of Matrix —— 矩阵倍增、矩阵快速幂的更多相关文章
- Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)
Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...
- Luogu T7152 细胞(递推,矩阵乘法,快速幂)
Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每 ...
- UVa 11149 Power of Matrix(倍增法、矩阵快速幂)
题目链接: 传送门 Power of Matrix Time Limit: 3000MS Description 给一个n阶方阵,求A1+A2+A3+......Ak. 思路 A1+A2+. ...
- poj3613:Cow Relays(倍增优化+矩阵乘法floyd+快速幂)
Cow Relays Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7825 Accepted: 3068 Descri ...
- HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂
题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...
- Power of Matrix 等比数列求和 矩阵版!
#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #inclu ...
- HDU1575Tr A(矩阵相乘与快速幂)
Tr A hdu1575 就是一个快速幂的应用: 只要知道怎么求矩阵相乘!!(比赛就知道会超时,就是没想到快速幂!!!) #include<iostream> #include<st ...
- bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 613 Solved: 256[Submit][Status] ...
- bzoj 3240 矩阵乘法+十进制快速幂
首先,构造出从f[][i]->f[][i+1]的转移矩阵a,和从f[i][m]->f[i+1][1]的转移矩阵b, 那么从f[1][1]转移到f[n][m]就是init*(a^(m-1)* ...
随机推荐
- Codeforces Round #317 [AimFund Thanks-Round] (Div. 2) Order Book 模拟
原题链接:http://codeforces.com/contest/572/problem/B 题意 很迷,自行看题. 题解 看懂题就会做了 代码 #include<iostream> ...
- springBoot报错Exception in thread "main" java.lang.NoClassDefFoundError: ch/qos/logback/classic/Level
解决办法: 如果使用的是阿里云 maven 镜像,在这会有找不到最新 Springboot 相关包的问题,请把加速镜像指向华为云: <mirror> <id>huaweiclo ...
- Oracle if else 、case when 判断示例
declare -- 声明奖金的变量 v_comm emp.comm%type; begin -- 查询出员工的奖金 select comm into v_comm from emp where em ...
- IDEA一个窗口打开多个项目
首先IDEA没有Eclipse的Workspace的概念,且IDEA推荐是一个窗口对应着一个Project. 然后经过研究你会发现IDEA其实是由一个主进程来维护这些窗口的,所以即使你开了很多个窗口, ...
- javascript好文---深入理解定位父级offsetParent及偏移大小
前面的话 偏移量(offset dimension)是javascript中的一个重要的概念.涉及到偏移量的主要是offsetLeft.offsetTop.offsetHeight.offsetWid ...
- pv,uv
1.PV PV(page view),即页面浏览量:用户每1次对网站中的每个网页访问均被记录1次.用户对同一页面的多次访问,访问量累计. 2.什么是UV uv(unique visitor),指访问某 ...
- 每天一个 Linux 命令(16):which whereis locate命令
which 查看可执行文件的位置. whereis 查看文件的位置. locate 配合数据库查看文件位置.#whereis 和locate是从文件数据库里查找 数据库默认一个星期更新一次,所有 ...
- JobConf
/** * A map/reduce job configuration. * 翻译:一个map/reduce作业配置 * <p><code>JobConf</code ...
- AsyncTask源代码解析
快要毕业了.近期在阿里巴巴校园招聘面试,一面过了,感觉挺轻松,可能是运气好.面试官感觉比我腼腆一些.我俩从android绕到了spring mvc 到数据库悲观锁 到linux 然后又会到了andro ...
- C语言关键字—-sizeof 、typedef、const、static、register、extern、#define
关键字:sizeof .#define.typedef.const.static.register.extern sizeof 1. 作用:求数据所占得内存空间大小 2. 本质:求数据得类型所占的内存 ...