Leetcode 479.最大回文数乘积
最大回文数乘积
你需要找到由两个 n 位数的乘积组成的最大回文数。
由于结果会很大,你只需返回最大回文数 mod 1337得到的结果。
示例:
输入: 2
输出: 987
解释: 99 x 91 = 9009, 9009 % 1337 = 987
说明:
n 的取值范围为 [1,8]。
class Solution {
public int largestPalindrome(int n) {
if(n == 1) return 9;
int upper = (int)Math.pow(10,n)-1;
for(int i = upper; i>upper/10; i--){
long palin = toPalindrome(i);
for(int j = upper; j>upper/10; j--){
if(palin / j > upper)
break;
if(palin % j == 0)
return (int)(palin % 1337);
}
}
return -1;
}
public long toPalindrome(int i){
StringBuffer str = new StringBuffer();
str.append(i+"");
String a = str.reverse().toString();
return Long.parseLong(i+""+a);
}
}
Leetcode 479.最大回文数乘积的更多相关文章
- Java实现 LeetCode 479 最大回文数乘积
479. 最大回文数乘积 你需要找到由两个 n 位数的乘积组成的最大回文数. 由于结果会很大,你只需返回最大回文数 mod 1337得到的结果. 示例: 输入: 2 输出: 987 解释: 99 x ...
- 479 Largest Palindrome Product 最大回文数乘积
你需要找到由两个 n 位数的乘积组成的最大回文数.由于结果会很大,你只需返回最大回文数 mod 1337得到的结果.示例:输入: 2输出: 987解释: 99 x 91 = 9009, 9009 % ...
- [Swift]LeetCode479. 最大回文数乘积 | Largest Palindrome Product
Find the largest palindrome made from the product of two n-digit numbers. Since the result could be ...
- python刷LeetCode:9. 回文数
难度等级:简单 题目描述: 判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121输出: true示例 2: 输入: -121输出: fa ...
- 每日一道 LeetCode (3):回文数
前文合集 每日一道 LeetCode 文章合集 题目:回文数 题目来源:https://leetcode-cn.com/problems/palindrome-number/ 判断一个整数是否是回文数 ...
- 【LeetCode】9. 回文数
题目 判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1:输入: 121 输出: true 示例 2:输入: -121 输出: false 解释: 从左 ...
- 力扣(LeetCode) 9.回文数
判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...
- LeetCode Golang 9.回文数
9. 回文数 第一种办法 :itoa 转换为字符串进行处理: package main import ( "strconv" "fmt" ) //判断一个整数是 ...
- leetcode题解:回文数
判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...
随机推荐
- 一键部署Drupal开源内容管理系统
https://market.azure.cn/Vhd/Show?vhdId=10897&version=12950 产品详情 产品介绍Drupal是一个由Dries Buytaert创立的自 ...
- HDU 4734 F(x) (数位DP,基础)
题意: 一个非负整数的十进制位是这样的 (AnAn-1An-2 ... A2A1),定义F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1. ...
- 【TensorFlow入门完全指南】模型篇·最近邻模型
最近邻模型,更为常见的是k-最近邻模型,是一种常见的机器学习模型,原理如下: KNN算法的前提是存在一个样本的数据集,每一个样本都有自己的标签,表明自己的类型.现在有一个新的未知的数据,需要判断它的类 ...
- Ubuntu下apt-get与pip安装命令的区别
在ubuntu服务器下安装包的时候,经常会用到sudo apt-get install 包名 或 sudo pip install 包名,那么两者有什么区别呢? 1.区别pip用来安装来自PyPI(h ...
- [opencv] applyColorMap
applyColorMap 功能 转化为热力图,因为热力图我们看的变化更加细微,在很多地方都用到了热力图. 最近在看CAM,所以记一记这个函数. 感觉还是很有用的. 代码 >>> i ...
- Android颜色选择器介绍
使用Android的颜色选择器可以让我们的view在不同状态下显示不同的颜色. 1.Android中ListView 选择某项改变该行字体颜色 2.文件位置 res/color/filename.xm ...
- 两个有序数列,求中间值 Median of Two Sorted Arrays
原题: There are two sorted arrays nums1 and nums2 of size m and n respectively.Find the median of the ...
- volatile引发的一系列血案
最早读<深入理解java虚拟机>对于volatile部分就没有读明白,最近重新拿来研究并记录一些理解 理解volatile前需要把以下这些概念或内容理解: 1.JMM内存模型 2.并发编程 ...
- Dojo的ready函数:dojo.ready(以前的dojo.addOnLoad)
dojo的dojo/domReady!插件和dojo/ready的区别: In simple cases,dojo/domReady! should be used. If an app us ...
- MarkdownPad 2 Pro 注册码
MarkdownPad 2 Pro 注册码 MarkdownPad 是 Windows 平台上一个功能完善的 Markdown 编辑器. 提供了语法高亮和方便的快捷键功能,给您最好的 Markdown ...