【题解】 CF891C Envy

很好玩的一道题。尽管不难,但是调了很久QAQ

考虑克鲁斯卡尔最小生成树的算法,可以发现这些最小树生成的性质:

  • 当生成树所有边的权值都\(\le\)某个$ w$的时刻,的连通性是确定的。

  • 只要是同一个图的最小生成树,记\(f(w)\)是权值为\(w\)的边在最小树中生成次数,\(f(w)\)是确定的。

实际上这就是一个拟阵的基本性质

但是做这道题我个人认为只需要考虑第一个性质就好了。

分析克鲁斯卡尔究竟在干嘛,是不是它就是在"不联通的就连上边,联通的就算了",这样的最终结果都是两个点成功联通了。

再考虑克鲁斯卡尔的顺序,发现点联通的顺序是不变的,因为是按照\(e[t].w\)升序的。

再仔细分析一下克鲁斯卡尔到底在干嘛,是不是对于当前选中边的两个端点,假若联通就丢弃这条边,不联通就选取这条边。

考虑克鲁斯卡尔的性质,我们就记录一下对于一条边,当所有\(\le w\)的边加入后,两端点的联通情况。

查询是问给定一个边集,是否可以得到一个包括所有这些边的MST

那么我们把边集按照\(w\)分类,每个\(w\)单独判断是否合法就好了。

怎么判断是否合法呢?不选取的条件就是两个端点不能联通,我们在主函数里预处理一下所有\(w\)的联通情况,(们只需记录端点在不在一起),那么查询这些边是否构成环就好了。

怎么判环?并查集。但是并查集初始化\(O(n)\),会\(O(mn)TLE\)。不会持久化结构,但是有个\(tirck\) ,就是我们只初始化我们要用的点,这样的正确性也很显然。

#include<bits/stdc++.h>

using namespace std;typedef long long ll;
#define DRP(t,a,b) for(register int t=(a),edd=(b);t>=edd;--t)
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;++t)
#define ERP(t,a) for(register int& t=head[a];t;t=e[t].nx)
#define midd register int mid=(l+r)>>1
#define TMP template < class ccf >
#define lef l,mid,pos<<1
#define rgt mid+1,r,pos<<1|1
#define pushup(pos) (seg[pos]=seg[pos<<1]+seg[pos<<1|1])
TMP inline ccf qr(ccf b){
register char c=getchar();register int q=1;register ccf x=0;
while(c<48||c>57)q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)x=x*10+c-48,c=getchar();
return q==-1?-x:x;}
TMP inline ccf Max(ccf a,ccf b){return a<b?b:a;}
TMP inline ccf Min(ccf a,ccf b){return a<b?a:b;}
TMP inline ccf Max(ccf a,ccf b,ccf c){return Max(a,Max(b,c));}
TMP inline ccf Min(ccf a,ccf b,ccf c){return Min(a,Min(b,c));}
TMP inline ccf Abs(ccf a){return a<0?-a:a;}
TMP inline ccf READ(ccf* _arr,int _n){RP(t,1,_n)_arr[t]=qr((ccf)1);}
//----------------------template&IO---------------------------
const int maxn=1e5+15; struct E{
int to,nx,id;
}e[maxn<<2]; int head[maxn];
int dfn[maxn<<1];
int ind[maxn];
int oud[maxn];
bool usd[maxn<<1];
int n,m;
int cnt;
int top; inline void add(int fr,int to,int id,bool f){
e[++cnt]=(E){to,head[fr],id};head[fr]=cnt;
if(f) add(to,fr,-id,0);
} void dfs(int now){
ERP(t,now){
register int qaq=t;
if(usd[abs(e[qaq].id)]) continue;
usd[abs(e[qaq].id)]=1;
dfs(e[qaq].to);
dfn[++top]=e[qaq].id;
}
} int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
register int t1=qr(1)&1;
n=qr(1);m=qr(1);
for(register int t=1,r1,r2;t<=m;++t){
r1=qr(1);r2=qr(1);
add(r1,r2,t,t1);
++oud[r1];++ind[r2];
}
if(t1) {RP(t,1,n) if((ind[t]+oud[t])&1) return puts("NO"),0;}
else {RP(t,1,n) if(ind[t]^oud[t]) return puts("NO"),0; }
RP(t,1,n) if(head[t]) {dfs(t);if(top^m) return puts("NO"),0;break;}
puts("YES");
DRP(t,m,1) printf("%d ",dfn[t]);
putchar('\n');
return 0;
}

【题解】CF891CEnvy的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. 前台页面获取servlet传过来的数据

    servlet中的代码: public void doGet(HttpServletRequest request, HttpServletResponse response) throws Serv ...

  2. 解决 java.sql.SQLException: Before start of result set

    java中使用如下代码做数据库连接,用以查询数据 *******************我是分割线************************************* try { Class.f ...

  3. ThinkPHP创建应用的一般开发流程及实例

    Thinkphp是免费开源的php框架,提供了建站所需要的各种组件,方便用户快速建设部署网站. Thinkphp简介:http://thinkphp.cn/Manual/16 官方完全开发手册:htt ...

  4. vps

    vps是指虚拟专用服务器(Virtual Private Servers),等同于一台远程计算机,有独立的IP地址,全天24小时不关机,可以部署博客.应用.服务 ***简称SS,可以用来搭建FQ服务器 ...

  5. 人工神经网络--ANN

    神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方 ...

  6. PropertyGrid—隐藏某些Public属性

    1.定义一个继承ControlDesigner 的类 public class MyControlDesigner:System.Windows.Forms.Design.ControlDesigne ...

  7. Android内存泄露调试

    Android 内存泄漏调试 一.概述 如果我们编写的代码当中有太多的对内存使用不当的地方,难免会使得我们的设备运行缓慢,甚至是死机.为了能够使得 Android 应用程序安全且快速的运行, Andr ...

  8. 【C语言天天练(十一)】深入理解指针

    引言:在C语言中.指针的地位是不言而喻的,要想非常好的掌握C语言,掌握指针是必须的,这也是C语言不同于其它语言的地方. (一)指针的指针 样例: int i; int *pi;/*把pi初始化为指向变 ...

  9. dedecms织梦后台password忘记了怎么办?dedecms织梦后台password忘记怎样找回password?

    方法一:自己用解密的方式 用phpmyadmin登陆后台数据库,查看 找到password:去除前三位和后一位,然后拷贝到http://www.cmd5.com/在线解密工具里面解密 watermar ...

  10. syslog,rsyslog and syslog-ng

    http://en.wikipedia.org/wiki/Syslog Syslog is a standard for computer message logging. It permits se ...