题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1677

题意:

  给定n(n <= 10^6),将n分解为2的幂次方之和,问你有多少种方法。

题解:

  两种方法。

  一、无限背包

    将1,2,4,8...看作物品体积就好。

    复杂度O(n*k),k约为20。

  二、递推

    对于dp[i],有两种情况。

      (1)i为奇数。则分解结果中一定有1。

          所以dp[i] = dp[i-1]。

      (2)i为偶数。再分两种情况:

          a. 分解结果中有1,所以dp[i] += dp[i-1]

          b. 分解结果中没有1,即所有加数都是2的倍数。可以将所有加数都除以2,所以dp[i] += dp[i/2]

          综上:dp[i] = dp[i-1] + dp[i/2]

AC Code(背包):

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 1000005
#define MOD 1000000000 using namespace std; int n;
int dp[MAX_N]; int main()
{
cin>>n;
memset(dp,,sizeof(dp));
dp[]=;
for(int i=;i<=;i++)
{
for(int j=(<<i);j<=n;j++)
{
dp[j]=(dp[j]+dp[j-(<<i)])%MOD;
}
}
cout<<dp[n]<<endl;
}

AC Code(递推):

 // if is odd dp[i] = dp[i-1]
// if is even dp[i] = dp[i-1] + dp[i/2]
#include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 1000005
#define MOD 1000000000 using namespace std; int n;
int dp[MAX_N]; int main()
{
cin>>n;
memset(dp,,sizeof(dp));
dp[]=;
for(int i=;i<=n;i++)
{
if(i&) dp[i]=dp[i-];
else dp[i]=(dp[i-]+dp[i>>])%MOD;
}
cout<<dp[n]<<endl;
}

BZOJ 1677 [Usaco2005 Jan]Sumsets 求和:dp 无限背包 / 递推【2的幂次方之和】的更多相关文章

  1. BZOJ 1677: [Usaco2005 Jan]Sumsets 求和( dp )

    完全背包.. --------------------------------------------------------------------------------------- #incl ...

  2. BZOJ 1677: [Usaco2005 Jan]Sumsets 求和

    题目 1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 617  Solved: 344[Su ...

  3. bzoj 1677: [Usaco2005 Jan]Sumsets 求和【dp】

    设f[i]为i的方案数,f[1]=1,考虑转移,如果是奇数,那么就是f[i]=f[i-1]因为这1一定要加:否则f[i]=f[i-1]+f[i>>1],就是上一位+1或者i/2位所有因子乘 ...

  4. 1677: [Usaco2005 Jan]Sumsets 求和

    1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 626  Solved: 348[Submi ...

  5. 【BZOJ】1677: [Usaco2005 Jan]Sumsets 求和(dp/规律)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1677 完全背包很容易想到,将1,2,4...等作为物品容量即可. 然后这题还有一个递推式 f[i]= ...

  6. BZOJ1677: [Usaco2005 Jan]Sumsets 求和

    1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 570  Solved: 310[Submi ...

  7. 【BZOJ1677】[Usaco2005 Jan]Sumsets 求和 递推

    ... #include <iostream> using namespace std; ]; int n,i; int main() { cin>>n; f[]=; ;i&l ...

  8. [Usaco2005 Jan]Sumsets 求和

    Description Farmer John commanded his cows to search for different sets of numbers that sum to a giv ...

  9. HYSBZ(BZOJ) 4300 绝世好题(位运算,递推)

    HYSBZ(BZOJ) 4300 绝世好题(位运算,递推) Description 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<= ...

随机推荐

  1. rsync一些常用的命令

    渗透测试的时候会遇到RSYNC 匿名访问 在对一些大型互联网进行测试的时候经常会遇到rsync. 什么是Rsync Rsync(remote synchronize)是一个远程数据同步工具,可通过LA ...

  2. vue 父子通信过程

    1.概述 每个 Vue 实例都实现了事件接口,即: 使用 $on(eventName) 监听事件 使用 $emit(eventName, optionalPayload) 触发事件 2.示例一(未传递 ...

  3. pythonkeywordis与 ==的差别

    pythonkeywordis与 ==的差别 近期在学习Python.总结一下小知识点. Python中的对象包括三要素:id.type.value 当中id用来唯一标识一个对象.type标识对象的类 ...

  4. 阿里云服务器教程–SSH 登录时出现如下错误:Host key verification failed

    注意:本文相关 Linux 配置及说明已在 CentOS 6.5 64 位操作系统中进行过测试.其它类型及版本操作系统配置可能有所差异,具体情况请参阅相应操作系统官方文档. 问题描述 使用 SSH 登 ...

  5. 连续调用scanf的问题总结

    对于非常简单的scanf函数,一直使用,但是却是有很多的知识点没有掌握好,现总结如下: 1.多个scanf之后,后序以 scanf("%c",&c) 当程序连续调用scan ...

  6. c语言中结构体指针

    1.指向结构体的指针变量: C 语言中->是一个总体,它是用于指向结构体,如果我们在程序中定义了一个结构体,然后声明一个指针变量指向这个结构体.那么我们要用指针取出结构体中的数据.就要用到指向运 ...

  7. C#高级编程八十一天----捕获异常

    捕获异常 前面主要说了关于异常的一些基础和理论知识,没有进入到正真的异常案例,这一讲通过几个案例来描写叙述一下异常的捕获和处理. 案例代码: using System; using System.Co ...

  8. Mysql 5.7.18 加密连接mysql_ssl_rsa_setup

    MySQL 5.7.18 下载地址: https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.18-linux-glibc2.5-x86_64. ...

  9. Azure、数据、AI开发工具

    Azure.数据.AI开发工具 在今天召开的 Connect(); 2017 开发者大会上,微软宣布了 Azure.数据.AI 开发工具的内容.这是第一天的 Connect(); 2017 的主题演讲 ...

  10. 【转】iOS安全之RSA加密/生成公钥、秘钥 pem文件

    在iOS中使用RSA加密解密,需要用到.der和.p12后缀格式的文件,其中.der格式的文件存放的是公钥(Public key)用于加密,.p12格式的文件存放的是私钥(Private key)用于 ...