Apache Spark 2.2.0新特性介绍(转载)
这个版本是 Structured Streaming 的一个重要里程碑,因为其终于可以正式在生产环境中使用,实验标签(experimental tag)已经被移除。在流系统中支持对任意状态进行操作;Apache Kafka 0.10 的 streaming 和 batch API支持读和写操作。除了在 SparkR, MLlib 和 GraphX 里面添加新功能外,该版本更多的工作在系统的可用性(usability)、稳定性(stability)以及代码的润色(polish)并解决了超过 1100 个tickets。
这篇文章中将详细介绍这些新特性,包括:
- Structured Streaming的生产环境支持已经就绪;
- 扩展 SQL 的功能;
- R 中引入了新的分布式机器学习算法;
- MLlib 和 GraphX 中添加了新的算法
Structured Streaming
Structured Streaming 是从 Spark 2.0 开始引入的,其提供了高层次的API来构建流应用程序;目的是提供一种简单的方式来构建端到端的流应用程序(end-to-end streaming applications),提供了一致性保证和容错方式。
从 Spark 2.2.0 开始,Structured Streaming 已经为生产环境的支持准备就绪,除了移除了实验性标签,还包括了一些高层次的变化,比如:
- Kafka Source and Sink: Apache Kafka 0.10 的 streaming 和 batch API支持读和写操作;
- Kafka Improvements: Kafka 到 Kafka 流操作中的producer 支持缓存以实现低延迟;
- Additional Stateful APIs:
[flat]MapGroupsWithState操作支持复杂的状态处理以及超时处理; - Run Once Triggers:详情:Running Streaming Jobs Once a Day For 10x Cost Savings
SQL 和 Core APIs
自从 Spark 2.0 发布,Spark 已经成为大数据领域中功能最丰富并且符合标准的SQL查询引擎之一。它可以连接各种数据源,并且可以在这些数据上执行 SQL-2003 标准语句,包括分析函数以及子查询。Spark 2.2 还添加了许多 SQL 新功能,包括:
- API 更新: 统一了数据源和hive serde表的
CREATE TABLE语法;SQL查询支持广播提示(broadcast hints )比如BROADCAST, BROADCASTJOIN, 以及 MAPJOIN; - 总体性能和稳定性:
- filter、join、aggregate、project 以及 limit/sample 操作支持基于成本优化器的基数统计(Cost-based optimizer cardinality estimation);
- 使用星型启发式(star-schema heuristics)来提升 TPC-DS 性能;
- CSV 和 JSON 文件 listing/IO 性能提升;
- HiveUDAFFunction 支持部分集合;
- 引入基于JVM对象的聚合运算符
- 其他值得关注的改变:
- 支持解析多行的JSON 和 CSV 文件
- 分析分区表的命令
MLlib 和 SparkR
Spark 2.2.0 的最后一大变化主要集中在高级分析,MLlib 和 GraphX 添加了以下的新算法:
- 局部敏感哈希(Locality Sensitive Hashing)
- 多级逻辑回归(Multiclass Logistic Regression)
- 个性化PageRank(Personalized PageRank)
Spark 2.2.0还在 SparkR 中添加了以下分布式算法:
- 交替最小二乘(ALS,Alternating Least Squares )
- 保序回归(Isotonic Regression)
- 多层感知分类器(Multilayer Perceptron Classifier)
- 随机森林(Random Forest)
- 高斯混合模型(Gaussian Mixture Model)
- 线性判别式分析(Linear Discriminant Analysis, LDA)
- 多级逻辑回归(Multiclass Logistic Regression)
- 梯度提升树(Gradient Boosted Trees)
- Structured Streaming API 支持 R 语言
- R 中支持 to_json, from_json
- 支持Multi-column approxQuantile
随着这些算法的增加,SparkR已经成为 R 中最全面的分布式机器学习库。
该文转载自 https://www.iteblog.com/archives/2194.html
英文原文参考 https://databricks.com/blog/2017/07/11/introducing-apache-spark-2-2.html
Apache Spark 2.2.0新特性介绍(转载)的更多相关文章
- Apache Spark 2.2.0 新特性详细介绍
本章内容: 待整理 参考文献: Apache Spark 2.2.0新特性详细介绍 Introducing Apache Spark 2.2
- Apache Spark 2.3.0 重要特性介绍
文章标题 Introducing Apache Spark 2.3 Apache Spark 2.3 介绍 Now Available on Databricks Runtime 4.0 现在可以在D ...
- Apache Spark 1.6公布(新特性介绍)
Apache Spark 1.6公布 CSDN大数据 | 2016-01-06 17:34 今天我们很高兴可以公布Apache Spark 1.6,通过该版本号,Spark在社区开发中达到一个重要的里 ...
- Hadoop3.0新特性介绍,比Spark快10倍的Hadoop3.0新特性
Hadoop3.0新特性介绍,比Spark快10倍的Hadoop3.0新特性 Apache hadoop 项目组最新消息,hadoop3.x以后将会调整方案架构,将Mapreduce 基于内存+io+ ...
- webpack 4.0.0-beta.0 新特性介绍
webpack 可以看做是模块打包机.它做的事情是:分析你的项目结构,找到JavaScript模块以及其它的一些浏览器不能直接运行的拓展语言(Scss,TypeScript等),并将其打包为合适的格式 ...
- Pivotal Greenplum 6.0 新特性介绍
Pivotal Greenplum 6.0 新特性介绍 在1月12日举办的Greenplum开源有道智数未来技术研讨会上,Pivotal中国研发中心Greenplum 产品经理李阳向大家介绍了Pi ...
- [转帖]Pivotal Greenplum 6.0 新特性介绍
Pivotal Greenplum 6.0 新特性介绍 https://cloud.tencent.com/developer/news/391063 原来 greenplum 也是基于pg研发的. ...
- 【c#】6.0与7.0新特性介绍记录
c#发展史 引用地址:https://www.cnblogs.com/ShaYeBlog/p/3661424.html 6.0新特性 1.字符串拼接优化 语法格式:$”string {参数}” 解释: ...
- Apache Cassandra 4.0新特性介绍
引言 大家好,我是蔡一凡,是Cassandra的贡献者之一.(虽然我不便透露我的公司名称),但目前我们公司Cassandra的部署是全世界最大的之一,Cassandra在我们公司也有很多的应用. Ca ...
随机推荐
- Android为TV端助力 自定义通知栏
package com.example.mvp; import cn.ljuns.temperature.view.TemperatureView;import presenter.ILoginPre ...
- (后端)JackSon将java对象转换为JSON字符串(转)
转载小金金金丶园友: JackSon可以将java对象转换为JSON字符串,步骤如下: 1.导入JackSon 的jar包 2.创建ObjectMapper对象 3.使用ObjectMapper对象的 ...
- PyCharm 使用Github管理Django项目
不管是对于教程代码免费分享的需要,还是项目开发过程中的版本管理,Github都是我们首选的开源代码仓库,如果你没有私有仓库,并且不用保护代码,那么将项目上传到Github上是最佳的选择. 关于如何使用 ...
- coTurn测试程序之turnutils_stunclient.exe
测试使用方法,作为STUN客户端,仅用于测试STUN服务是否正常运行. 使用coTurn服务启动STUN/TURN服务后,执行以下命令即可: turnutils_stunclient -p 61.18 ...
- [20181204]低版本toad 9.6直连与ora-12505.txt
[20181204]低版本toad 9.6直连与ora-12505.txt --//我们生产系统还保留有一台使用AMERICAN_AMERICA.US7ASCII字符集的数据库,这样由于toad新版本 ...
- JQuery实现全选、全不选和反选功能
看重点就行了,最后面给一个网页完整的代码 代码实例: function selectStu() { $.ajax("StuList",{ type:"post" ...
- 洗礼灵魂,修炼python(76)--全栈项目实战篇(4)—— 购物车系统
要求: 1.基本符合日常购物车的要求(根据你的想法开放性提升功能) 2.展示商品信息,并且可随时上新商品 3.用户购买每一样商品时都对所剩的钱做一次对比,如果够则提示“已购买”,如果不够提示“余额不足 ...
- Java中数组、List、Set互相转换
数组转List String[] staffs = new String[]{"Tom", "Bob", "Jane"}; List sta ...
- C#方法重载(overload)方法重写(override)隐藏(new)
一.重载:同一个作用域内发生(比如一个类里面),定义一系列同名方法,但是方法的参数列表不同.这样才能通过传递不同的参数来决定到底调用哪一个. 值得注意的是,方法重载只有通过参数不同来判断调用哪个方法, ...
- Apache kylin 入门
本篇文章就概念.工作机制.数据备份.优势与不足4个方面详细介绍了Apache Kylin. Apache Kylin 简介 1. Apache kylin 是一个开源的海量数据分布式预处理引擎.它通过 ...