原文链接 https://www.cnblogs.com/zhouzhendong/p/AtCoder-Dwango-Programming-Contest-V-E.html

题意

有 $n$ 个数,第 $i$ 个数为 $a_i$ ,对于任意一个 $1,2,\cdots ,n$ 的排列 $P$ ,如果将所有边 $(i,P_i)$ 相连,那么必然得到一些环。定义函数 $f(P)=\prod_{r 是 P 中的一个环} r 中最小的 a_i 值$ 。定义 $S(i)=\sum_{P代表i 个环} f(P)$ ,求 $\gcd(S(1),S(2),\cdots ,S(n))$ 。

题解

好久没发博客了。我的退役生活被 10 门丰富多彩的学科暴虐。

首先将 $a_i$ 升序排列。

设 $dp[i][j]$ 为前 $i$ 个数分成 $j$ 个环对答案的贡献。

那么

$$dp[i][j] = dp[i-1][j]\times (i-1) + dp[i-1][j-1] \times a_i$$

其中初始值为 $dp[0][0]=1$ 。

则题目要求的就是 $\gcd(dp[n][1],dp[n][2],\cdots ,dp[n][n])$ 。

设 $g_k(x) = \sum_{i=0}^{n} dp[k][i] x^i$,则有 $g_{k+1}(x) = (k+a_{k+1}x)g_k(x)$ 。

即 $g_n(x) = \prod_{i=0}^{n-1} (i+a_{i+1}x)$ 。

引理

设 $P,Q$ 为多项式,定义函数 $G(P)=\gcd(P_0,P_1,\cdots)$ ,其中 $P_i$ 为多项式 $P$ 的 $i$ 次项。那么,必然有 $G(PQ) = G(P)G(Q)$ 。

证明上面的引理,只需要转化成一个显然的引理即可:

若 $G(P) = G(Q) = 1$,则 $G(PQ) = 1$ 。

引理完

于是最终答案就是 $\prod_{i=0}^{n-1} \gcd(i,a_{i+1})$ 。

代码

#include <bits/stdc++.h>
using namespace std;
const int N=100005,mod=998244353;
int n,a[N];
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
int main(){
cin >> n;
for (int i=0;i<n;i++)
cin >> a[i];
sort(a,a+n);
int ans=1;
for (int i=0;i<n;i++)
ans=1LL*ans*gcd(a[i],i)%mod;
cout << ans;
return 0;
}

  

AtCoder [Dwango Programming Contest V] E 动态规划 多项式的更多相关文章

  1. AtCoder Dwango Programming Contest V E

    题目链接:https://dwacon5th-prelims.contest.atcoder.jp/tasks/dwacon5th_prelims_e 题目描述: 给定一个大小为\(N\)的数组\(A ...

  2. Atcoder Dwango Programming Contest V

    模拟,做了ABC三题. D难一些,就不会了. 中规中矩的吧... Atcoder DPCV B 题意:给一个序列,求出所有的子串和中AND值最大的k个数的AND. 思路:既然要求AND,那么肯定按位考 ...

  3. 【AtCoder】Dwango Programming Contest V题解

    A - Thumbnail 题意简述:给出N个数,找出N个数中和这N个数平均值绝对值最小的数 根据题意写代码即可= = #include <bits/stdc++.h> #define f ...

  4. Dwango Programming Contest V 翻车记

    A:签到. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> ...

  5. [AtCoder] NIKKEI Programming Contest 2019 (暂缺F)

    [AtCoder] NIKKEI Programming Contest 2019   本来看见这一场的排名的画风比较正常就来补一下题,但是完全没有发现后两题的AC人数远少于我补的上一份AtCoder ...

  6. [AtCoder] Yahoo Programming Contest 2019

    [AtCoder] Yahoo Programming Contest 2019   很遗憾错过了一场 AtCoder .听说这场是涨分场呢,于是特意来补一下题. A - Anti-Adjacency ...

  7. AtCoder NIKKEI Programming Contest 2019 E. Weights on Vertices and Edges (并查集)

    题目链接:https://atcoder.jp/contests/nikkei2019-qual/tasks/nikkei2019_qual_e 题意:给出一个 n 个点 m 条边的无向图,每个点和每 ...

  8. AtCoder NIKKEI Programming Contest 2019 C. Different Strokes (贪心)

    题目链接:https://nikkei2019-qual.contest.atcoder.jp/tasks/nikkei2019_qual_C 题意:给出 n 种食物,Takahashi 吃下获得 a ...

  9. atcoder NIKKEI Programming Contest 2019 E - Weights on Vertices and Edges

    题目链接:Weights on Vertices and Edges 题目大意:有一个\(n\)个点\(m\)条边的无向图,点有点权,边有边权,问至少删去多少条边使得对于剩下的每一条边,它所在的联通块 ...

随机推荐

  1. 搭建activemq服务

    文章链接:https://www.cnblogs.com/xiaxinggege/p/5900319.html ubuntu下安装JDK并搭建activeMQ   1.安装JDK,网上有人说activ ...

  2. 移动端适配——font-size计算

    function calcFontSize(){ var view_width = window.screen.width; var view_height = window.screen.heigh ...

  3. easyui生成合并行,合计计算价格

    easyui生成合并行,合计计算价格 注:本文来源: 原创 一:图样你效果图 二:代码实现 1:datagrid 列展示: window.dataGrid = $("#dataGrid&qu ...

  4. Confluence 6 数据导入和导出

    Confluence 管理员和用户可以从各种方法向  Confluence 中导入数据.针对不同的导入方式,有关权限的要求也是不相同的.请参考页面 Import Content Into Conflu ...

  5. ios 逆向编程(环境搭建)

    首先如果你想要逆向其他的APP 动态的查看 或者修改人家APP里面的东西 1, 首先要有一台越狱的手机 最好是9.1以下的,因为9.2以上(包括9.2)就不能完美越狱了 2,手机也要5s以上的(因为从 ...

  6. 使用pm2离线部署nodejs项目

    1.下载https://npm.taobao.org/mirrors/node/v8.11.1/node-v8.11.1-linux-x64.tar.xz 比如安装到/opt目录 xz -d node ...

  7. poj2441状态压缩dp基础

    /* 给定n头牛,m个谷仓,每头牛只能在一些特定的谷仓,一个谷仓只能有一头牛 问可行的安排方式 dp[i][j]表示前i头牛组成状态j的方案数,状态0表示无牛,1表示有牛 使用滚动数组即可 枚举到第i ...

  8. bzoj 1042

    典型的背包+容斥 首先,考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可 接下来,如果有个数的限制,那么我们就要利用一些容斥的思想:没有1个超过限制的方 ...

  9. OrCAD Capture CIS 16.6 在原理图页面内放置图片

    OrCAD Capture CIS 16.6 菜单:Place > Picture... 在Place Picture窗口中,文件类型选择All Files (*.*),接着选择需要插入的图片, ...

  10. 20165206第4次实验《Android程序设计》实验报告

    20165206第4次实验<Android程序设计>实验报告 一.实验报告封面 课程:Java程序设计 班级:1652班 姓名:韩啸 学号:20165206 指导教师:娄嘉鹏 实验日期:2 ...