AtCoder [Dwango Programming Contest V] E 动态规划 多项式
原文链接 https://www.cnblogs.com/zhouzhendong/p/AtCoder-Dwango-Programming-Contest-V-E.html
题意
有 $n$ 个数,第 $i$ 个数为 $a_i$ ,对于任意一个 $1,2,\cdots ,n$ 的排列 $P$ ,如果将所有边 $(i,P_i)$ 相连,那么必然得到一些环。定义函数 $f(P)=\prod_{r 是 P 中的一个环} r 中最小的 a_i 值$ 。定义 $S(i)=\sum_{P代表i 个环} f(P)$ ,求 $\gcd(S(1),S(2),\cdots ,S(n))$ 。
题解
好久没发博客了。我的退役生活被 10 门丰富多彩的学科暴虐。
首先将 $a_i$ 升序排列。
设 $dp[i][j]$ 为前 $i$ 个数分成 $j$ 个环对答案的贡献。
那么
$$dp[i][j] = dp[i-1][j]\times (i-1) + dp[i-1][j-1] \times a_i$$
其中初始值为 $dp[0][0]=1$ 。
则题目要求的就是 $\gcd(dp[n][1],dp[n][2],\cdots ,dp[n][n])$ 。
设 $g_k(x) = \sum_{i=0}^{n} dp[k][i] x^i$,则有 $g_{k+1}(x) = (k+a_{k+1}x)g_k(x)$ 。
即 $g_n(x) = \prod_{i=0}^{n-1} (i+a_{i+1}x)$ 。
引理
设 $P,Q$ 为多项式,定义函数 $G(P)=\gcd(P_0,P_1,\cdots)$ ,其中 $P_i$ 为多项式 $P$ 的 $i$ 次项。那么,必然有 $G(PQ) = G(P)G(Q)$ 。
证明上面的引理,只需要转化成一个显然的引理即可:
若 $G(P) = G(Q) = 1$,则 $G(PQ) = 1$ 。
引理完
于是最终答案就是 $\prod_{i=0}^{n-1} \gcd(i,a_{i+1})$ 。
代码
#include <bits/stdc++.h>
using namespace std;
const int N=100005,mod=998244353;
int n,a[N];
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
int main(){
cin >> n;
for (int i=0;i<n;i++)
cin >> a[i];
sort(a,a+n);
int ans=1;
for (int i=0;i<n;i++)
ans=1LL*ans*gcd(a[i],i)%mod;
cout << ans;
return 0;
}
AtCoder [Dwango Programming Contest V] E 动态规划 多项式的更多相关文章
- AtCoder Dwango Programming Contest V E
题目链接:https://dwacon5th-prelims.contest.atcoder.jp/tasks/dwacon5th_prelims_e 题目描述: 给定一个大小为\(N\)的数组\(A ...
- Atcoder Dwango Programming Contest V
模拟,做了ABC三题. D难一些,就不会了. 中规中矩的吧... Atcoder DPCV B 题意:给一个序列,求出所有的子串和中AND值最大的k个数的AND. 思路:既然要求AND,那么肯定按位考 ...
- 【AtCoder】Dwango Programming Contest V题解
A - Thumbnail 题意简述:给出N个数,找出N个数中和这N个数平均值绝对值最小的数 根据题意写代码即可= = #include <bits/stdc++.h> #define f ...
- Dwango Programming Contest V 翻车记
A:签到. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> ...
- [AtCoder] NIKKEI Programming Contest 2019 (暂缺F)
[AtCoder] NIKKEI Programming Contest 2019 本来看见这一场的排名的画风比较正常就来补一下题,但是完全没有发现后两题的AC人数远少于我补的上一份AtCoder ...
- [AtCoder] Yahoo Programming Contest 2019
[AtCoder] Yahoo Programming Contest 2019 很遗憾错过了一场 AtCoder .听说这场是涨分场呢,于是特意来补一下题. A - Anti-Adjacency ...
- AtCoder NIKKEI Programming Contest 2019 E. Weights on Vertices and Edges (并查集)
题目链接:https://atcoder.jp/contests/nikkei2019-qual/tasks/nikkei2019_qual_e 题意:给出一个 n 个点 m 条边的无向图,每个点和每 ...
- AtCoder NIKKEI Programming Contest 2019 C. Different Strokes (贪心)
题目链接:https://nikkei2019-qual.contest.atcoder.jp/tasks/nikkei2019_qual_C 题意:给出 n 种食物,Takahashi 吃下获得 a ...
- atcoder NIKKEI Programming Contest 2019 E - Weights on Vertices and Edges
题目链接:Weights on Vertices and Edges 题目大意:有一个\(n\)个点\(m\)条边的无向图,点有点权,边有边权,问至少删去多少条边使得对于剩下的每一条边,它所在的联通块 ...
随机推荐
- MybatisGenerator生成的mapper 少了识别主键的方法 byPrimaryKey()
生成的文件缺少红线标注的类似方法 添加 <property name="useInformationSchema" value="true"/>即可 ...
- Jmeter之模拟文件上传、下载接口操作
上周群里有位同学,问我用jmeter怎么上传文件?因好久没用jmeter了,顺便自己也复习下,现整理出来和大家分享 一.准备工作: 上传接口一个(自行开发解决了) 下载接口 ps:没有困难创造困难也要 ...
- linux流量异常查看哪些程序占用的
Linux下进程/程序网络带宽占用情况查看工具 -- NetHogs http://www.vpser.net/manage/nethogs.html 来自. 最后略有修改 之前VPS侦探曾 ...
- 反转链表算法Java实现
之前遇到反转链表的算法,比较晦涩难解,但其实挺简单的. 目标:将一个顺序链表反转. 思路:用三个辅助节点,每次实现一个节点的指向反转,即他的后继变为他的前驱. 三个辅助节点: p q r 按顺序 ...
- web页面乱码,JSP页面编码设置
解决Web页面访问出现乱码bug,JSP页面首行添加: <%@ page language="java" contentType="text/html; chars ...
- Java代码自动部署
注:本文来源于<it小熊> [ ①Java代码自动部署-总结简介] 代码部署是每一个软件开发项目组都会有的一个流程,也是从开发环节到发布功能必不可少的环节.对于Java开发者来说,Java ...
- 最长上升子序列(dp)
链接:https://www.nowcoder.com/questionTerminal/d83721575bd4418eae76c916483493de来源:牛客网 广场上站着一支队伍,她们是来自全 ...
- 优先选择nullptr而不是0和NULL
我们知道:0是一个int,而不是一个指针.如果C++在一个只有指针才能够使用的上下文中发现它只有一个0,那么它会勉强将0解释成空指针,但那时一种倒退行为.C++的主要方针是0就是一个int,而不是指针 ...
- nodejs 如何获取页面get、post传递过来的参数
如果是get传递参数,可以直接使用 request.query.name 如果是post 需要借助body-parser 首先引入bodyParser = require('body-parser') ...
- Android相关 博客收藏
#1 Android 网络编程 参考博客 :http://blog.csdn.net/kieven2008/article/details/8210737 #2 Could not find com. ...