这道题可以树链剖分做。但是最近在给学弟搞数据结构复习了LCA树状数组RMQ

然后就搞了一发LCA+树状数组维护。

dis数组维护当前点到根节点的权值和。则dis(u,v) = dis[u]+dis[v]-2*dis[lca(u,v)]

修改的时候,单点修改影响了该点所有儿子的dis,刚好可以用dfs序定位所有儿子,用树状数组改段求点很方便。

http://blog.csdn.net/q573290534/article/details/6664454 树状数组的三种求和(改点求段,改段求点,改段求段)

http://blog.csdn.net/qwe2434127/article/details/49819975 dfs序题目类型

http://www.cnblogs.com/longdouhzt/archive/2011/10/16/2214034.html LCA题目小节

 #include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm> using namespace std; const int maxn = 2e5+; int N,Q,S;
//vector <int> G[maxn]; struct edge{
int to,next,w;
}e[*maxn]; int head[*maxn],tot;
void add_edge(int u,int v,int w)
{
e[tot].to = v;
e[tot].w = w;
e[tot].next = head[u];
head[u] = tot++; e[tot].to = u;
e[tot].w = w;
e[tot].next = head[v];
head[v] = tot++;
} int in[maxn],out[maxn],P[*maxn],fa[maxn][],dep[maxn],dis[maxn],cnt;
void dfs(int u,int _fa,int _dep,int _dis)
{
in[u] = ++cnt;
P[cnt] = u;
fa[u][] = _fa;
dis[u] = _dis;
dep[u] = _dep;
for(int i=head[u];~i;i=e[i].next)
{
int v = e[i].to;
if(v == _fa) continue;
dfs(v,u,_dep+,_dis+e[i].w);
}
out[u] = ++cnt;
}
void debug()
{
printf("in:\t");for(int i=;i<=N;i++) printf("%d ",in[i]);puts("");
printf("out:\t");for(int i=;i<=N;i++) printf("%d ",out[i]);puts("");
printf("p:\t");for(int i=;i<=cnt;i++) printf("%d ",P[i]);puts("");
printf("dis:\t");for(int i=;i<=N;i++) printf("%d ",dis[i]);puts("");
printf("dep:\t");for(int i=;i<=N;i++) printf("%d ",dep[i]);puts("");
printf("edge:");for(int i=;i<tot;i++) printf("\tto:%d w:%d\n",e[i].to,e[i].w);
} int initLCA()
{
int m = (int)log(N)/log()+;
for(int k=;k<m;k++)
{
for(int v=;v<=N;v++)
{
if(fa[v][k] < ) {fa[v][k+] = -;continue;}
else fa[v][k+] = fa[fa[v][k]][k];
}
}
} int LCA(int u,int v)
{
int m = (int)log(N)/log()+;
if(dep[v] > dep[u]) swap(u,v);
for(int k=;k<m;k++)
{
if((dep[u]-dep[v])>>k & )
u = fa[u][k];
}
if(u == v) return u;
for(int k=m-;k>=;k--)
{
if(fa[u][k] != fa[v][k])
{
u = fa[u][k];
v = fa[v][k];
}
}
return fa[u][];
} int c[*maxn];
int lowbit(int x) {return x&-x;} void init()
{
memset(head,-,sizeof head);
memset(fa,-,sizeof fa);
memset(c,,sizeof c);
memset(in,,sizeof in);
memset(out,,sizeof out);
tot = ;
cnt = ;
} void add(int x,int d)
{
while(x)
{
c[x] += d;
x -= lowbit(x);
}
}
void add_seg(int l,int r,int d)
{
add(r,d);
add(l-,-d);
}
int sum(int x)
{
int res = ;
//printf("u:%d ",P[x]);
while(x <= cnt)
{
res += c[x];
x += lowbit(x);
}
//printf("res:%d\n",res);
return res;
}
int dist(int x)
{
if(x == -) return ;
return sum(in[x]) + dis[x];
}
int main()
{
//freopen("input.txt","r",stdin);
while(~scanf("%d%d%d",&N,&Q,&S))
{
init();
for(int i=,u,v,w;i<N-;i++)
{
scanf("%d%d%d",&u,&v,&w);
add_edge(u,v,w);
}
dfs(,-,,);
//debug();
initLCA();
for(int i=;i<tot;i+=)
{
if(dep[e[i].to] < dep[e[i+].to]) swap(e[i].to,e[i+].to);
}
int op;
for(int i=,a,b,c;i<Q;i++)
{
scanf("%d",&op);
if(op == )
{
scanf("%d",&a);
int lca = LCA(S,a);
//printf("lca:%d\n",lca); printf("%d\n",dist(S)+dist(a)-*(dist(lca)));
S = a;
}else
{
scanf("%d%d",&a,&b);
a--;
int u = e[a*].to;
int dw = b - (dist(u) - dist(fa[u][]));
//printf("dw:%d u:%d\n",dw,u);
add_seg(in[u],out[u],dw);
}
}
}
}

POJ2763-Housewife Wind-树上单点修改区间求和的更多相关文章

  1. 【DFS序+单点修改区间求和】POJ 3321 Apple Tree

    poj.org/problem?id=3321 [题意] 给一棵n个节点的树,每个节点开始有一个苹果,m次操作 1.将某个结点的苹果数异或 1 2.查询一棵子树内的苹果数 #include<io ...

  2. Lightoj 1348 Aladdin and the Return Journey (树链剖分)(线段树单点修改区间求和)

    Finally the Great Magical Lamp was in Aladdin's hand. Now he wanted to return home. But he didn't wa ...

  3. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  4. POJ2763 Housewife Wind 树链剖分 边权

    POJ2763 Housewife Wind 树链剖分 边权 传送门:http://poj.org/problem?id=2763 题意: n个点的,n-1条边,有边权 修改单边边权 询问 输出 当前 ...

  5. LightOJ 1112 Curious Robin Hood (单点更新+区间求和)

    http://lightoj.com/volume_showproblem.php?problem=1112 题目大意: 1 i        将第i个数值输出,并将第i个值清0 2 i v     ...

  6. POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)

    POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...

  7. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

  8. HDOJ(HDU).1166 敌兵布阵 (ST 单点更新 区间求和)

    HDOJ(HDU).1166 敌兵布阵 (ST 单点更新 区间求和) 点我挑战题目 题意分析 根据数据范围和询问次数的规模,应该不难看出是个数据结构题目,题目比较裸.题中包括以下命令: 1.Add(i ...

  9. hdu 1166线段树 单点更新 区间求和

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

随机推荐

  1. 一篇 JPA 总结

    概述 下面是 JDBC 在 Java 应用和数据库之间的位置,充当着一个中间者,供 Java 应用程序访问所有类别的数据库,建立一个标准 JPA 如同 JDBC 一样,为 Java 应用程序使用 OR ...

  2. Mysql:is not allowed to connect to this MySQL server

    连接mysql的时候发生这个错误:ERROR 1130: Host '192.168.1.110' is not allowed to connect to this MySQL server 解决方 ...

  3. Mysql启动找不到mysql.sock文件问题(Centos7)

    刚装完Mysql5.7,将Mysql添加到开机自启.reboot之后mysql服务却没启动起来, 直接输入mysql –uroot –p ,出现如下错误,找不到mysql.sock文件.用servic ...

  4. pip 安装 和 卸载 django

    1. 在dos命令行中输入 pip 如下命令进行安装: 安装最新的版本的 Django 命令如下: pip install django 安装 指定版本的 Django 命令如下: pip insta ...

  5. 多线程系列之二:Single Thread Execution 模式

    一,什么是SingleThreadExecution模式?同一时间内只能让一个线程执行处理 二,例子 1.不安全的情况 用程序模拟 三个人频繁地通过一个只允许一个人经过的门.当人通过时,统计人数便会增 ...

  6. 【kindle笔记】之 《浪潮之巅》- 2018-1-

    <浪潮之巅> 这本书推荐自最爱的政治课老师. 政治课老师张巍老师.我会一直记得你的. 以这样的身份来到这个学校,他人的质疑,自己的忐忑,老板的不公.犹犹豫豫谨小慎微地前进. 第一次听到这样 ...

  7. js 通过url获取里面的参数值

    场景描述:当我们从一个页面要带有一两个值跳转到另一个页面,另一个页面要使用这些参数的时候,我们就需要通过js获取这些参数啦. 先贴上代码: function getQueryString(name) ...

  8. 【360图书馆】插入U盘自动攻击:BadUSB原理与实现

    插入U盘自动攻击:BadUSB原理与实现       漏洞背景 “BadUSB”是今年计算机安全领域的热门话题之一,该漏洞由Karsten Nohl和Jakob Lell共同发现,并在今年的Black ...

  9. C++加载动态库的形式来实现封装

    目录结构 └── test ├── CMakeLists.txt ├── base.h //设置接口 ├── drive.cpp //具体实现 └── main.cpp //test CMakeLis ...

  10. 逻辑斯特回归tensorflow实现

    calss #!/usr/bin/python2.7 #coding:utf-8 from __future__ import print_function import tensorflow as ...