题目意思:给出n k 求  k%1 + k%2 +k%3+...+k%n 的和

利用分块的思想 我们知道 k%i ==k-k/i*i

同时 一段连续的区间的 k/i 是相等的

#include<bits/stdc++.h>
using namespace std;
#define maxn
#define LL long long
int main(){
 // freopen("joseph.in","r",stdin);
 // freopen("joseph.out","w",stdout);
  LL n,k;
  cin>>n>>k;
  LL ans=;
  if(n>=k){
     ans+=k*(n-k);
     ,r=;l<=k&&r<=k;l=r+){
        r=k/(k/l);
        LL len=r-l+;
        ans+=len*k-(l+r)*len/*(k/l);
     }
     cout<<ans<<endl;
  }else{
     ans=;
     ,r=;l<=k;l=r+){
        r=k/(k/l);
        if(r>n) r=n;
        LL len=r-l+;
        ans+=len*k-(l+r)*len/*(k/l);
        if(r==n) break;
     }
     cout<<ans<<endl;
  }
}

CodeFroces--Joseph’s Problem的更多相关文章

  1. UVa 1363 (数论 数列求和) Joseph's Problem

    题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分 ...

  2. UVA 1363 Joseph's Problem 找规律+推导 给定n,k;求k%[1,n]的和。

    /** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想 ...

  3. Problem J. Joseph’s Problem 约瑟夫问题--余数之和

    链接:https://vjudge.net/problem/UVA-1363 题意:给出n  k,当 i 属于 1~n 时 ,求解 n% i 的和 n 和 k 的范围都是 1 到 10^9; 商相同 ...

  4. UVa 1363 - Joseph's Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. UVA 1363 Joseph's Problem

    https://vjudge.net/problem/UVA-1363 n 题意:求 Σ  k%i i=1 除法分块 如果 k/i==k/(i+1)=p 那么 k%(i+1)=k-(i+1)*p= k ...

  6. LA 3521 Joseph's Problem

    题意:给你正整数n和k,然后计算从i到n k%i的和: 思路:如果n小于1000000,直接暴力计算,然后大于1000000的情况,然后在讨论n和k的大小,根据k%i的情况,你会发现规律,是多个等差数 ...

  7. Joseph's Problem UVALive - 3521(等差数列的应用)

    题意:给定n, k,求出∑ni=1(k mod i) 思路:由于n和k都很大,直接暴力是行不通的,然后在纸上画了一些情况,就发现其实对于k/i相同的那些项是形成等差数列的,于是就可以把整个序列进行拆分 ...

  8. UVALive - 3521 Joseph's Problem (整除分块)

    给定$n,k$$(1\leqslant n,k\leqslant 10^9)$,计算$\sum\limits _{i=1}^nk\: mod\:i$ 通过观察易发现$k\%i=k-\left \lfl ...

  9. UVA1363 - Joseph's Problem(数学,迷之优化)

    题意:给出n和k,1≤n,k≤1e9,计算 切入点是k/i 和 k/(i+1)差距不大.令pi = k/i, ri = k%i.如果pi+1 == pi,那么ri+1 == k - pi(i+1) = ...

  10. UVa1363 Joseph's Problem

    把整个序列进行拆分成[k,k/2),[k/2, k/3), [k/3,k/4)...k[k/a, k/b)的形式,对于k/i(整除)相同的项,k%i成等差数列. /*by SilverN*/ #inc ...

随机推荐

  1. Laravel5 创建自定义门面(Facade)

    门面为应用服务容器中的绑定类提供了一个“静态”接口.Laravel 内置了很多门面,你可能在不知道的情况下正在使用它们.Laravel 的门面作为服务容器中底层类的“静态代理”,相比于传统静态方法,在 ...

  2. Laravel自带SMTP邮件组件实现发送邮件(QQ、163、企业邮箱都可)

    Laravel自带SMTP邮件组件实现发送邮件(QQ.163.企业邮箱都可)     laravel自带SMTP邮件配置和遇到的坑 laravel自带SwiftMailer库,集成了多种邮件API,可 ...

  3. Python 基础知识----数据类型

    一.Number 类型(数值类型) 二.String 类型 (字符串类型) 三.List 类型 (列表类型) 是一种常用的序列类型簇,List 用中括号 [ ] 表示,不同的元素(任意类型的值)之间以 ...

  4. CentOS7装Tomcat

    有两种安装方式:(1)yum 命令  (2)安装包 本次采用第二种方式: 1.windos下载apache-tomcat-7.0.73.tar.gz安装包 2.通过WinSCP传到linux下(本次放 ...

  5. JDK 12 & JAVA

    JDK 12 & JAVA js style https://github.com/winterbe https://winterbe.com/posts/2018/09/24/java-11 ...

  6. Yii2控制台程序最佳实践

    模板工程标准的控制台程序要素: (1)完整明确文字提示用户(并且使用红,绿,黄三种颜色标识提示文字:红色为错误相关,绿色为成功相关,黄色为进行中提示) (2)告知用户运行进度(完成任务的一部分即显示进 ...

  7. 各个版本spring的jar包以及源码下载地址,目前最高版本到spring4.3.8,留存备用:

    http://maven.springframework.org/release/org/springframework/spring/

  8. 提示“Web打印服务CLodop未安装启动”的各种原因和解决方法

    旧版提示:"CLodop云打印服务(localhost本地)未安装启动!"新版提示:"Web打印服务CLodop未安装启动,点击这里下载执行安装(若此前已安装过,可点这里 ...

  9. Tembin

    1:组织机构和用户之间是多对一的关系,一个组织结构可以有多个成员,一个成员只能属于一个组织机构. 2:app里面的邀请成员:是邀请发送短信通知用户注册tembin账户,当用户去注册的时候下面就会显示所 ...

  10. VM虚拟机截图方法介绍

    可以先安装QQ之类的截图软件,但比较麻烦,而且截图之后还需要安装VMware Tools等工具才能拿到物理机上 先定向到物理机,快捷键为CTRL+ALT,之后在用qq截图快捷键ctrl+alt+a即可 ...