CodeFroces--Joseph’s Problem
题目意思:给出n k 求 k%1 + k%2 +k%3+...+k%n 的和
利用分块的思想 我们知道 k%i ==k-k/i*i
同时 一段连续的区间的 k/i 是相等的
#include<bits/stdc++.h> using namespace std; #define maxn #define LL long long int main(){ // freopen("joseph.in","r",stdin); // freopen("joseph.out","w",stdout); LL n,k; cin>>n>>k; LL ans=; if(n>=k){ ans+=k*(n-k); ,r=;l<=k&&r<=k;l=r+){ r=k/(k/l); LL len=r-l+; ans+=len*k-(l+r)*len/*(k/l); } cout<<ans<<endl; }else{ ans=; ,r=;l<=k;l=r+){ r=k/(k/l); if(r>n) r=n; LL len=r-l+; ans+=len*k-(l+r)*len/*(k/l); if(r==n) break; } cout<<ans<<endl; } }
CodeFroces--Joseph’s Problem的更多相关文章
- UVa 1363 (数论 数列求和) Joseph's Problem
题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分 ...
- UVA 1363 Joseph's Problem 找规律+推导 给定n,k;求k%[1,n]的和。
/** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想 ...
- Problem J. Joseph’s Problem 约瑟夫问题--余数之和
链接:https://vjudge.net/problem/UVA-1363 题意:给出n k,当 i 属于 1~n 时 ,求解 n% i 的和 n 和 k 的范围都是 1 到 10^9; 商相同 ...
- UVa 1363 - Joseph's Problem(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 1363 Joseph's Problem
https://vjudge.net/problem/UVA-1363 n 题意:求 Σ k%i i=1 除法分块 如果 k/i==k/(i+1)=p 那么 k%(i+1)=k-(i+1)*p= k ...
- LA 3521 Joseph's Problem
题意:给你正整数n和k,然后计算从i到n k%i的和: 思路:如果n小于1000000,直接暴力计算,然后大于1000000的情况,然后在讨论n和k的大小,根据k%i的情况,你会发现规律,是多个等差数 ...
- Joseph's Problem UVALive - 3521(等差数列的应用)
题意:给定n, k,求出∑ni=1(k mod i) 思路:由于n和k都很大,直接暴力是行不通的,然后在纸上画了一些情况,就发现其实对于k/i相同的那些项是形成等差数列的,于是就可以把整个序列进行拆分 ...
- UVALive - 3521 Joseph's Problem (整除分块)
给定$n,k$$(1\leqslant n,k\leqslant 10^9)$,计算$\sum\limits _{i=1}^nk\: mod\:i$ 通过观察易发现$k\%i=k-\left \lfl ...
- UVA1363 - Joseph's Problem(数学,迷之优化)
题意:给出n和k,1≤n,k≤1e9,计算 切入点是k/i 和 k/(i+1)差距不大.令pi = k/i, ri = k%i.如果pi+1 == pi,那么ri+1 == k - pi(i+1) = ...
- UVa1363 Joseph's Problem
把整个序列进行拆分成[k,k/2),[k/2, k/3), [k/3,k/4)...k[k/a, k/b)的形式,对于k/i(整除)相同的项,k%i成等差数列. /*by SilverN*/ #inc ...
随机推荐
- idea远程调试tomcat
在开发Spring Boot应用的时候,会发现有的时候在idea工具中运行程序和打包程序后在tomcat下运行程序的结果会不太一样,因此就需要远程调试tomcat. 首先在tomcat目录下的bin目 ...
- [转帖]SPU、SKU、ID,它们都是什么意思,三者又有什么区别和联系呢?
SPU.SKU.ID,它们都是什么意思,三者又有什么区别和联系呢? http://blog.sina.com.cn/s/blog_5ff11b130102wx0p.html 电商时代,数据为王. 所以 ...
- longquan
/** * 登录后将数据填写到主数据 */ public void login(String login_nr) { //File f = new File(android.os.Environmen ...
- hadoop 管理命令dfsadmin
hadoop 管理命令dfsadmin dfsadmin 命令用于管理HDFS集群,这些命令常用于管理员. 1. (Safemode)安全模式 动作 命令 把集群切换到安全模式 bin/hdfs df ...
- 记录SSM框架项目迁移SpringBoot框架-----pom.xml的迁移
第一步:迁移pom.xml文件(去除spring相关的依赖) SSM中的pom: <project xmlns="http://maven.apache.org/POM/4.0.0&q ...
- python设计模式第八天【装饰器模式】
1.定义 使用包装的释放扩展类的功能,但是不使用继承 2.使用场景 3.代码实现 #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ def MyDecorat ...
- linux 安装python 和pip
下载文件 python官网:https://www.python.org/downloads/ 百度网盘http://pan.baidu.com/s/1mixGB12 密码 9nzu [r ...
- Js 常用字符串操作 API
常用的一些字符串操作 API 整理 1.str.charAt(index).str.charCodeAt(index) - 返回指定位置的字符 / 字符编码(0~65535) index - 必须,表 ...
- 学习 Spring (九) 注解之 @Required, @Autowired, @Qualifier
Spring入门篇 学习笔记 @Required @Required 注解适用于 bean 属性的 setter 方法 这个注解仅仅表示,受影响的 bean 属性必须在配置时被填充,通过在 bean ...
- ASP.NET MVC和Web API中的Angular2 - 第2部分
下载源码 内容 第1部分:Visual Studio 2017中的Angular2设置,基本CRUD应用程序,第三方模态弹出控件 第2部分:使用Angular2管道进行过滤/搜索,全局错误处理,调试客 ...