CodeFroces--Joseph’s Problem

题目意思:给出n k 求 k%1 + k%2 +k%3+...+k%n 的和
利用分块的思想 我们知道 k%i ==k-k/i*i
同时 一段连续的区间的 k/i 是相等的
#include<bits/stdc++.h>
using namespace std;
#define maxn
#define LL long long
int main(){
// freopen("joseph.in","r",stdin);
// freopen("joseph.out","w",stdout);
LL n,k;
cin>>n>>k;
LL ans=;
if(n>=k){
ans+=k*(n-k);
,r=;l<=k&&r<=k;l=r+){
r=k/(k/l);
LL len=r-l+;
ans+=len*k-(l+r)*len/*(k/l);
}
cout<<ans<<endl;
}else{
ans=;
,r=;l<=k;l=r+){
r=k/(k/l);
if(r>n) r=n;
LL len=r-l+;
ans+=len*k-(l+r)*len/*(k/l);
if(r==n) break;
}
cout<<ans<<endl;
}
}
CodeFroces--Joseph’s Problem的更多相关文章
- UVa 1363 (数论 数列求和) Joseph's Problem
题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分 ...
- UVA 1363 Joseph's Problem 找规律+推导 给定n,k;求k%[1,n]的和。
/** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想 ...
- Problem J. Joseph’s Problem 约瑟夫问题--余数之和
链接:https://vjudge.net/problem/UVA-1363 题意:给出n k,当 i 属于 1~n 时 ,求解 n% i 的和 n 和 k 的范围都是 1 到 10^9; 商相同 ...
- UVa 1363 - Joseph's Problem(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 1363 Joseph's Problem
https://vjudge.net/problem/UVA-1363 n 题意:求 Σ k%i i=1 除法分块 如果 k/i==k/(i+1)=p 那么 k%(i+1)=k-(i+1)*p= k ...
- LA 3521 Joseph's Problem
题意:给你正整数n和k,然后计算从i到n k%i的和: 思路:如果n小于1000000,直接暴力计算,然后大于1000000的情况,然后在讨论n和k的大小,根据k%i的情况,你会发现规律,是多个等差数 ...
- Joseph's Problem UVALive - 3521(等差数列的应用)
题意:给定n, k,求出∑ni=1(k mod i) 思路:由于n和k都很大,直接暴力是行不通的,然后在纸上画了一些情况,就发现其实对于k/i相同的那些项是形成等差数列的,于是就可以把整个序列进行拆分 ...
- UVALive - 3521 Joseph's Problem (整除分块)
给定$n,k$$(1\leqslant n,k\leqslant 10^9)$,计算$\sum\limits _{i=1}^nk\: mod\:i$ 通过观察易发现$k\%i=k-\left \lfl ...
- UVA1363 - Joseph's Problem(数学,迷之优化)
题意:给出n和k,1≤n,k≤1e9,计算 切入点是k/i 和 k/(i+1)差距不大.令pi = k/i, ri = k%i.如果pi+1 == pi,那么ri+1 == k - pi(i+1) = ...
- UVa1363 Joseph's Problem
把整个序列进行拆分成[k,k/2),[k/2, k/3), [k/3,k/4)...k[k/a, k/b)的形式,对于k/i(整除)相同的项,k%i成等差数列. /*by SilverN*/ #inc ...
随机推荐
- [翻译]在asp.net core2.0 OpenID Connect Handler中丢失了声明(CLaims)?
注:这是一篇翻译,来自这里.这篇文章讲述了在asp.net core2.0中使用openid connect handler的过程中解析不到你想要的claim时,你可以参考这篇文章. Missing ...
- [转帖]linux 清空history以及记录原理
linux 清空history以及记录原理 自己的linux 里面总是一堆 乱七八槽输错的命令 用这个办法 可以清空 linux的内容. 清爽一些. 1.当前session执行的命令,放置缓存中,执行 ...
- centos7之vm11添加网卡
需求 根据实际需求原来有一块网卡,现在需要新加一块网卡做集群. 1.在虚拟机添加一块网卡,开机后ip a查看是不是新加了一块网卡,下图是为了讲解,其实已经是做完的状态. 2.上满我们看到新加了一块网卡 ...
- 隐藏Nginx或Apache以及PHP的版本号的方法
当黑客入侵一台服务器时,首先会”踩点”, 这里的”踩点”,指的是了解服务器中运行的一些服务的详细情况,比如说:版本号,当黑客知道相应服务的版本号后,就可以寻找该服务相应版本的一些漏洞来入侵,攻击,所以 ...
- saltstack二
配置管理 haproxy的安装部署 haproxy各版本安装包下载路径https://www.haproxy.org/download/1.6/src/,跳转地址为http,改为https即可 创建相 ...
- MyBatis基础:MyBatis数据基本操作(2)
1. MyBatis映射器 2. MyBatis数据基本操作 示例项目结构: <project xmlns="http://maven.apache.org/POM/4.0.0&quo ...
- python time模块介绍(日期格式化 时间戳)
import time # 1.time.time() 用于获取当前时间的时间戳, ticks = time.time() print(ticks) # 1545617668.8195682 浮点数 ...
- LDOOP设置关联后超出新起一页LinkNewPage
关联打印的时候,top,left关联位置是相对于被关联打印项的偏移值,具体可查看本博客相关介绍博文:LODOP打印控件关联输出各内容 正常情况下,超文本超过打印项高度,或纸张高度会自动分页,如果超文本 ...
- Java 获取客户端ip返回127.0.0.1问题
Java开发中使用 request.getRemoteAddr 获取客户端 ip ,返回结果始终为127.0.0.1.原因是服务器使用了nginx反向代理. 解决办法:在nginx配置文件nginx. ...
- Python读取excel中的图片
作为Java程序员,Java自然是最主要的编程语言.但是Java适合完成大型项目,对于平时工作中小的工作任务,需要快速完成,易于修改和调试,使用Java显得很繁琐,需要进行类的设计,打成jar包,出现 ...