我在两年前的博客里曾经写过 SSE图像算法优化系列七:基于SSE实现的极速的矩形核腐蚀和膨胀(最大值和最小值)算法  一文,通过SSE的优化把矩形核心的腐蚀和膨胀做到了不仅和半径无关,而且速度也相当的快,当时在被博文的评论里有博友提出了如下的问题:

#1楼
-- : | 胡一谭
博主的思路很巧妙,只是这个算法本身还是不够快,优化效果与商业软件还是有比较大差距,4096X8192大小的的灰度图商业软件(halcon)只需要33ms, 本文需要250ms,考虑到商业软件采用多核优化,我测试机器是4核,
通常优化加速比在3倍左右,因此,本文并行化后的理论耗时为250/=.33ms。但我采用OpenMP对本文算法进行优化后达不到3倍的加速比。还是需要寻找更好的思路。

  当时看到这个评论后,真的觉得这博友是不是搞错了,这么大的图像,怎么可能只要33ms就处理完了呢,就是最简单的一个图像处理算法,反色(Invert)经过极度优化后也需要大概7/8毫秒的,所以我当时内心是不认可这个速度的。

  后续我也在考虑二值图像的这个特殊性,曾经有考虑过比如膨胀时,遇到有个是白色的像素则停止循环,也考虑过使用直方图的方式进行优化,毕竟直方图也只有两个像素了,但是也还是达不到上述速度,有些甚至还更慢。所以后续一直也没有什么进步。

  前几日,网友LQC-Jack突然又再次提到了这个问题,他认为针对这个问题确实有更快的方法,毕竟二值得特殊性摆在那里:

  其中的“你box滤波的,sum>0当前点就是255”  这个是关键,是啊,针对二值图求局部矩形内的最大值,和求二值图像的局部均值如果我们能够建立起联系,那么就可以借助于快速的局部均值算法间接的实现腐蚀或膨胀,我在博客里有多篇文章提到了局部均值的终极优化,特别是SSE图像算法优化系列十三:超高速BoxBlur算法的实现和优化(Opencv的速度的五倍)一文中提到的方式,效率及其高,针对4096X8192的二值图也就是30ms左右能搞定。希望燃起。

  那如何将两者搭桥呢,仔细想想确实很简单,如果是求最大值(膨胀),那么只要局部有一个像素为255,结果就为255,此时的局部均值必然大于0 (考虑实际因素,应该是局部累加值,因为考虑最后的整除,不排除某个局部区域,只有一个白点,当局部过大时,整除后的结果可能也为0),而只有所有局部内的像素都为0是,最大值才为0,这个时候 的局部累加值也必然为0。如果是求最,小值(腐蚀),只要局部有一个像素为0值,结果就为0,只有局部所有像素都为255,结果才为255,那么这里的信息反馈到局部均值就等同于说平均值为255,则结果为255,否则结果就为0(同样的道理,这里实际编程时要用局部累加值,而不是平均值)。

  如此一来,我们会发现,这种实现过程相比标准的方框模糊来说还少了一些步骤,我们先贴下我SSE优化方框模糊的核心部分:

 int BlockSize = , Block = (Width - ) / BlockSize;
__m128i OldSum = _mm_set1_epi32(LastSum);
__m128 Inv128 = _mm_set1_ps(Inv);
for (int X = ; X < Block * BlockSize + ; X += BlockSize)
{
__m128i ColValueOut = _mm_loadu_si128((__m128i *)(ColValue + X - ));
__m128i ColValueIn = _mm_loadu_si128((__m128i *)(ColValue + X + Radius + Radius));
__m128i ColValueDiff = _mm_sub_epi32(ColValueIn, ColValueOut); // P3 P2 P1 P0
__m128i Value_Temp = _mm_add_epi32(ColValueDiff, _mm_slli_si128(ColValueDiff, )); // P3+P2 P2+P1 P1+P0 P0
__m128i Value = _mm_add_epi32(Value_Temp, _mm_slli_si128(Value_Temp, )); // P3+P2+P1+P0 P2+P1+P0 P1+P0 P0
__m128i NewSum = _mm_add_epi32(OldSum, Value);
OldSum = _mm_shuffle_epi32(NewSum, _MM_SHUFFLE(, , , )); // 重新赋值为最新值
__m128 Mean = _mm_mul_ps(_mm_cvtepi32_ps(NewSum), Inv128);
_mm_storesi128_4char(_mm_cvtps_epi32(Mean), LinePD + X);
}

  注意第14及第15行为求均值并最终保存数据到内存中的过程,其中的NewSum中保存即为累加的值,注意这里因为有除法,所以借用了浮点版本的相关指令,同时增加了相关的类型转换过程。

  这里,为了适应我们的腐蚀和膨胀的需求,这两句是不需要的,按照上述分析,比如膨胀效果,只需作如下改动:

LinePD[X + ] = NewSum.m128i_i32[] >  ?  : ;
LinePD[X + ] = NewSum.m128i_i32[] > ? : ;
LinePD[X + ] = NewSum.m128i_i32[] > ? : ;
LinePD[X + ] = NewSum.m128i_i32[] > ? : ;

  以上代码只是示意,如果真的这样写,会破坏SSE算法的整体的和谐性,而且这种SSE中穿插普通C代码会带来性能上的极大损失,一种处理方法如下所示:

__m128i Flag = _mm_cmpgt_epi32(NewSum, _mm_setzero_si128());
Flag = _mm_packs_epi32(Flag, Flag);
*((int *)(LinePD + X)) = _mm_cvtsi128_si32(_mm_packs_epi16(Flag, Flag));

  我们利用SSE中比较运算符的特殊性,产生诸如0XFFFFFFFF这样的结果,然后在通过有关饱和运算将他们减低到8位,注意上面使用的都是有符号的饱和计算。

  对于腐蚀的过程,你知道怎么写吗?

  我们经过简单测试,处理一副4096X8192大小的二值图,任意的半径大小,耗时基本稳定在24ms左右,比boxblur也快了很多。

  我也构思过不实用累加和的方式判断,比如使用或运算或者与运算,但是都是解决不了进出像素的处理问题,因此,整体看来是还是用累加最为科学。

  其实对于半径比较小时,还是有更为快速的方法的,这里稍微简单描述下,但是可能很多人看不懂。

  在我们上述的实现中,我们用的是int类型的数据来保存累加值,这是因为半径稍微大一点累加值就可能超过short类型所能表达的范围,但是int类型SSE一次只能处理4个,而short类型数据SSE一次能处理8个,因此,如果做适当的变动是否有可能使用short类型呢,是用可能的。

  因为是二值图,所以就只有0和255两个值,0值无所谓,那如果我们把255这个值修改成1,那么在半径不大于某个数值(64还是其他数,可以自己画一画)时,累加值将可控在short类型所能表达的范围。

  这是还有个问题就是,255这个值如何变为1,如果使用_mm_blendv_epi8集合有关判断语句是可以实现的,但是这个Blend是比较耗时的,反而得不偿失。一个最好的办法就是充分利用无符号和有符号数之间的特点,当我们把一个等于255的unsigned char数据类型强制转换为signed char时,他的值就等于-1,和我们要的值1相反, 这个时候我们原本代码里的_mm_add_epi8接可以使用_mm_sub_epi8代替,反之亦然。而在SSE里,这种类型转换还不需要强制进行,因为他直接操作内存。

  我们贴下下面的代码可能有人就能明白是什么意思了。

memset(ColValue + Radius, , Width * sizeof(unsigned char));
for (int Z = -Radius; Z <= Radius; Z++)
{
unsigned char *LinePS = Src + ColOffset[Z + Radius] * Stride;
int BlockSize = , Block = Width / BlockSize;
for (int X = ; X < Block * BlockSize; X += BlockSize)
{
unsigned char *DestP = ColValue + X + Radius;
__m128i Sample = _mm_loadu_si128((__m128i *)(LinePS + X)); // 255成为-1
_mm_storeu_si128((__m128i *)DestP, _mm_sub_epi8(_mm_loadu_si128((__m128i *)DestP), Sample));
}
for (int X = Block * BlockSize; X < Width; X++)
{
ColValue[X + Radius] += (LinePS[X] == ? : ); // 更新列数据
}
}

  普通的C代码部分及时直接实现,而SSE部分,并没有看到明显的255到1之间的转换,一起都在那几句简简单单的代码中。

  通过这种相关的优化,大概4096X8192的图能做到12到13毫秒之间,已经完全超过了Halcon的速度。

  halcon中的腐蚀和膨胀也有圆形半径的,同样的半径下圆形半径在halcon中的耗时大概是矩形半径的8倍左右,我相信halcon的圆形半径的算法也是通过EDM算法来实现的,详见SSE图像算法优化系列二十五:二值图像的Euclidean distance map(EDM)特征图计算及其优化一文, 而我这里也差不都是这样的时间比例。

  极度优化版本工程:https://files.cnblogs.com/files/Imageshop/SSE_Optimization_Demo.rar,见Binary->Processing->Erode/Dilate菜单。

 

超越halcon速度的二值图像的腐蚀和膨胀,实现目前最快的半径相关类算法(附核心源码)。的更多相关文章

  1. 超越OpenCV速度的MorphologyEx函数实现(特别是对于二值图,速度是CV的4倍左右)。

    最近研究了一下opencv的 MorphologyEx这个函数的替代功能, 他主要的特点是支持任意形状的腐蚀膨胀,对于灰度图,速度基本和CV的一致,但是 CV没有针对二值图做特殊处理,因此,这个函数对 ...

  2. 基于SSE实现的极速的矩形核腐蚀和膨胀(最大值和最小值)算法。

    因未测试其他作者的算法时间和效率,本文不敢自称是最快的,但是速度也可以肯定说是相当快的,在一台I5机器上占用单核的资源处理 3000 * 2000的灰度数据用时约 20ms,并且算法和核心的大小是无关 ...

  3. SSE图像算法优化系列七:基于SSE实现的极速的矩形核腐蚀和膨胀(最大值和最小值)算法。

    因未测试其他作者的算法时间和效率,本文不敢自称是最快的,但是速度也可以肯定说是相当快的,在一台I5机器上占用单核的资源处理 3000 * 2000的灰度数据用时约 20ms,并且算法和核心的大小是无关 ...

  4. 二值形态学——腐蚀与膨胀 及 C语言代码实现

    参考文献:数字图像处理(第三版) 何东健 西安电子科技大学出版社 二值形态学中的运算对象是集合, 但实际运算中, 当涉及两个集合时并不把它们看作是互相对等的. 一般设A为图像集合, S为结构元素, 数 ...

  5. OpenCV图像处理篇之腐蚀与膨胀

    转载请注明出处:http://xiahouzuoxin.github.io/notes 腐蚀与膨胀 腐蚀和膨胀是图像的形态学处理中最主要的操作,之后遇见的开操作和闭操作都是腐蚀和膨胀操作的结合运算. ...

  6. c#数字图像处理(十二)图像的腐蚀与膨胀

    背景知识 腐蚀与膨胀基本原理:就是用一个特定的结构元素来与待处理图像按像素做逻辑操作:可以理解成拿一个带孔的网格板(结构元素矩阵中元素为1的为孔)盖住图像的某一部分,然后按照各种不同的观察方式来确定操 ...

  7. OpenCV学习笔记——图像的腐蚀与膨胀

    顺便又复习了一下cvcopy如何进行图像拼接(最近觉得打开多幅图像分别看不如缩小掉放拼接到一幅图像上对比来的好) 首先把拼接的目标图像设置兴趣区域ROI,比如我有一个total,要把a.b.c分别从左 ...

  8. OpenCV3编程入门笔记(4)腐蚀、膨胀、开闭运算、漫水填充、金字塔、阈值化、霍夫变换

    腐蚀erode.膨胀dilate 腐蚀和膨胀是针对图像中的白色部分(高亮部分)而言的,不是黑色的.除了输入输出图像外,还需传入模板算子element,opencv中有三种可以选择:矩形MORPH_RE ...

  9. OpenCV(6)-腐蚀和膨胀

    腐蚀和膨胀属于形态学操作. 腐蚀和膨胀 腐蚀是指:将卷积核B滑过图像A,找出卷积核区域内最小像素值作为锚点像素值.这一操作可以扩大低像素值区域. 膨胀是指:将卷积核B滑过图像A,找出卷积核区域内最大像 ...

随机推荐

  1. Oracle12c 性能优化攻略:攻略1-3: 匹配表类型与业务需求

    注:目录表 <Oracle12c 性能优化攻略:攻略目录表> 问题描述 你刚开始使用oracle数据库,并且学习了一些关于可用的各种表类型的知识.例如:可以在堆组织表.索引组织表等之间支出 ...

  2. Android UiAutomator2.0

    一.环境搭建 JDK(java环境).SDK(adb appt环境),这两个已经不想再叙述了直接看详见--> android studio 安装,下载地址:https://developer.a ...

  3. mac 端口占用问题

    查看端口号 终端输入:sudo lsof -i tcp:port 将port换成被占用的端口(如:8086.9998) 将会出现占用端口的进程信息. 杀死占用端口的PID进程 找到进程的PID,使用k ...

  4. xampp 安装以及相关问题

    1.安装xampp   说明:xampp集成了mysql,Apache,php,360软件里面就有 2.mysql端口被占用.              如果电脑上已安装MySql数据库,还想用XAM ...

  5. select前台转义后台取到的值为对应的文本 select同时接受list和map

    简单描述:select动态取值 要求是根据后台传过来的值在前台进行转义,emmm干就完了 思路分析:后台同时传过去一个map一个list ,map用来前台转义,list用来获取值,list取到的值相当 ...

  6. Python函数之匿名函数

    一:概述 匿名函数主要用来处理比较简单的逻辑,用一行显示,并将运算结果作为返回值返回 二:书写规则 函数名 = lambda 参数:返回值 参数可以有多个,多个参数使用逗号分隔 三 :例子 将func ...

  7. Java+selenium之WebDriver常见特殊情况如iframe/弹窗处理(四)

    1. iframe 的处理 查找元素必须在对应的 ifarme 中查找,否则是找不到的 // 传入参数为 frame 的序号,从0开始 driver.switchTo().frame(Int inde ...

  8. 一脸懵逼学习oracle

    oracle的默认用户:system,sys,scott: 1:查看登录的用户名:show user: 2:查看数据字典:dba_users; 3:创建新用户 (1)要连接到Oracle数据库,就需要 ...

  9. ASP.NET Core JWT认证授权介绍

    using JWTWebApi.Models; using Microsoft.AspNetCore.Authentication.JwtBearer; using Microsoft.AspNetC ...

  10. [转] mongodb下载、安装、配置与使用

    记得在管理员模式下运行CMD,否则服务将启动失败. 详细图解,记录 win7 64 安装mongo数据库的过程.安装的版本是 MongoDB-win32-x86_64-2008plus-ssl-3.4 ...