gym 101982 B题 Coprime Integers
题目链接:https://codeforces.com/gym/101982/attachments
贴一张图吧:

题目意思就是给出四个数字,a,b,c,d,分别代表两个区间[a,b],[c,d],从这两个区间里面分别拿一个数字组成(x,y),问x和y互质的组合有多少种。
这道题目好像要用莫比乌斯反演,但是目前没有了解过这个知识点,后续会补上,我用的是打表+容斥定理做的,相比于上一种方法,耗费的时间可能会多很多。我亲测是600到800ms,所以还是很有必要学莫比乌斯反演的。
接下来讲我的思路:两个区间里面所有的组合数是(b-a+1)*(d-c+1)种,我可以先算出不互质的组合的个数,再用总数减去它得到互质的组合数。
首先,假设我要算所有gcd(x,y)=2的组合数,那么在区间[a,b]里面,素因子含有2的数字个数是b/2-(a-1)/2这么多个,在区间[c,d]里面含有2这个素因子的数字的个数是d/2-(c-1)/2这么多。这两个数字相乘就是两个区间中gcd(x,y)=2的组合数字。
假如我们遍历计算1到10000000里面所有的素数(大概660000多一点),那么就会出现重复计算的情况,假如我gcd(x,y)=2和gcd(x,y)=3的情况都计算了一边,那么gcd(x,y)=6的情况就计算了两遍,那么我们就要再减去gcd(x,y)=6的情况的组合数。
这就要用到容斥定理(奇加偶减),假如一个数字n,它不同的素因子有奇数个,那么就加,如果是偶数个就减,并且它某一个素因子个数不能大于1个(6=2*3,它的素因子有2和3,素因子2有且只有一个,素因子3有且只有一个,那么这个数字我们是要计算的,另一个数字12=2*2*3,它的素因子2有2个,那么我们就不用计算它,因为它已经包含在(gcd(x,y)=2)的数量+(gcd(x,y)=3)的数量-(gcd(x,y)=6)里面了)。
那么我们现在就要先打表把所有类似于6(2*3),10(2*5),30(2*3*5),这种相同素因子只有一个的数筛出来(大概6000000个,所以花费时间有点多),然后遍历计算就可以了。
这个打表的过程可以在我们线性筛素数的过程中做到,所以这个打表是线性的。
这里面num[i]代表数字i有多少个不同的素数,例如num[30]=3,(30=2*3*5)。
flag[i]表示数字i是不是所有素数有且只有一个,如果flag[i]=true,那么这个i就是我们要找的数字。数组ok就是把这些数字存起来,等下遍历数组ok就可以了。
打表代码:
void init(){
memset(vis,,sizeof(vis));
memset(flag,false,sizeof(flag));
cnt=;//记录素数个数
cc=;//计录我们要找的数组个数
for(int i=;i<maxn;i++){
if(vis[i]==){
prime[cnt++]=i;//是一个素数
num[i]=; //不同的素因子是有它自己一个,复制为1
ok[cc++]=i; //保存在ok数组中
flag[i]=true; //标记这个数字是我们要找的
}
for(int j=;j<cnt&&(i*prime[j]<maxn);j++){
vis[prime[j]*i]=true;
if((i%prime[j])!=)//在这之前我们已经知道了num[i],只要i不被prime[j]整除,那么prime[j]*i这个数字不同素因子个数就是num[i]+1
num[prime[j]*i]=num[i]+;
if(flag[i]==&&(i%prime[j])){//假如flag[i]=true,说明i是我们要找的数字,并且i%prime[j]非0,那么prime[j]*i也是我们要找的数字
ok[cc++]=i*prime[j];
flag[i*prime[j]]=true;
}
if(i%prime[j]==)
break;
}
}
}
完整代码:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<stack>
#include<cmath>
#include<vector>
#include<set>
#include<cstdio>
#include<string>
#include<deque>
using namespace std;
typedef long long LL;
#define eps 1e-8
#define INF 0x3f3f3f3f
#define maxn 10000005
int prime[maxn],vis[maxn],num[maxn],ok[maxn],flag[maxn];
int n,m,k,t,cnt,cc;
void init(){
memset(vis,,sizeof(vis));
memset(flag,false,sizeof(flag));
cnt=;//记录素数个数
cc=;//计录我们要找的数组个数
for(int i=;i<maxn;i++){
if(vis[i]==){
prime[cnt++]=i;//是一个素数
num[i]=; //不同的素因子是有它自己一个,复制为1
ok[cc++]=i; //保存在ok数组中
flag[i]=true; //标记这个数字是我们要找的
}
for(int j=;j<cnt&&(i*prime[j]<maxn);j++){
vis[prime[j]*i]=true;
if((i%prime[j])!=)//在这之前我们已经知道了num[i],只要i不被prime[j]整除,那么prime[j]*i这个数字不同素因子个数就是num[i]+1
num[prime[j]*i]=num[i]+;
if(flag[i]==&&(i%prime[j])){//假如flag[i]=true,说明i是我们要找的数字,并且i%prime[j]非0,那么prime[j]*i也是我们要找的数字
ok[cc++]=i*prime[j];
flag[i*prime[j]]=true;
}
if(i%prime[j]==)
break;
}
}
}
int main()
{
int a,b,c,d;
init();
sort(ok,ok+cc);
while(scanf("%d%d%d%d",&a,&b,&c,&d)!=EOF){
LL ans=;
int maxx=min(b,d);//记录一下两个,区间最小的右边界,可有可无吧 ,好像影响不大
for(int i=;i<cc&&ok[i]<=maxx;i++){
int now=ok[i];
if(num[now]%){//计数加 ,注意答案非常大,要用long long
ans+=(LL)(b/now-(a-)/now)*(d/now-(c-)/now);
}else{//偶数减
ans-=(LL)(b/now-(a-)/now)*(d/now-(c-)/now);
}
}
printf("%lld\n",(LL)(b-a+)*(d-c+)-ans);
}
return ;
}
待补充。。。。。。
来补充了,额,请看下面大佬介绍莫比乌斯反演,完......
补充:https://www.cnblogs.com/chenyang920/p/4811995.html
gym 101982 B题 Coprime Integers的更多相关文章
- Gym - 101982B Coprime Integers (莫比乌斯反演)
题目链接:http://codeforces.com/gym/101982/attachments 题目大意:有区间[a,b]和区间[c,d],求gcd(x,y)=1,其中x属于[a,b],y属于[c ...
- Gym - 101982B 2018-2019 ACM-ICPC Pacific Northwest Regional Contest (Div. 1) B. Coprime Integers Mobius+容斥 ab间gcd(x,y)=1的对数
题面 题意:给你 abcd(1e7),求a<=x<=b,c<=y<=d的,gcd(x,y)=1的数量 题解:经典题目,求从1的到n中选x,从1到m中选y的,gcd(x,y)=k ...
- 莫比乌斯反演第二弹 入门 Coprime Integers Gym - 101982B
题目链接:https://cn.vjudge.net/problem/Gym-101982B 题目大意: 给你(a,b)和(c,d)这两个区间,然后问你这两个区间中互素的对数是多少. 具体思路:和我上 ...
- Gym - 100221D 一题一直没过的dfs,,应该是纯手动码?
不写了,10年以后再回来写. http://codeforces.com/gym/100221/attachments H题
- codeforces GYM 100971F 公式题或者三分
F. Two Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- Gym - 100676E —— 基础题
题目链接:https://odzkskevi.qnssl.com/1110bec98ca57b5ce6aec79b210d2849?v=1490453767 题解: 这种方法大概跟离散化扯上点关系:首 ...
- Gym - 101982F Rectangles (扫描线+线段树)
链接:http://codeforces.com/gym/101982/attachments 思路: 问被覆盖次数为奇数次的矩阵的面积并 扫描线求矩阵面积并我们是上界赋为-1,下界赋为1,因为要求覆 ...
- codeforces Gym 100735 D、E、G、H、I
http://codeforces.com/gym/100735 D题 直接暴力枚举 感觉这道题数据有点问题 为什么要先排下序才能过?不懂.. #include <stdio.h> #in ...
- Gym - 101982F 扫描线+线段树
题目链接:https://codeforces.com/gym/101982/attachments 要你求覆盖奇数次的矩形面积并,每次更新时减去原先的值即可实现奇数次有效,下推时为保证线段长度不变左 ...
随机推荐
- vim的基础操作
- CentOS初次安装基本配置
在虚拟机中安装CentOS7碰到的问题以及解决方法 1.安装之后想通过CRT远程连接获,输入ifconfig查看系统ip报错误:ifconfig command not found,报此错误是由于初次 ...
- 爬虫系列4:Requests+Xpath 爬取动态数据
爬虫系列4:Requests+Xpath 爬取动态数据 [抓取]:参考前文 爬虫系列1:https://www.cnblogs.com/yizhiamumu/p/9451093.html [分页]:参 ...
- shell中使用类似Python的参数处理
params=$* for param in ${params} do name=$() value=$() if [[ "$name" = "run_type" ...
- 服务调用框架DataStrom
根据以前的命名服务,从新构建了下服务框架: 结构模式:c-center-s; 1.服务端: 服务端启动,讲自己的IP,端口注册到注册中心节点(master),然后注册自己的处理类(需要继承对应接口); ...
- 分析RedisRDB和AOF两种持久化机制的工作原理及优劣势
一.RDB和AOF两种持久化机制的介绍 RDB持久化机制,对redis中的数据执行周期性的持久化 AOF机制对每条写入命令作为日志,以append-only(追加)的模式写入一个日志文件中,在redi ...
- 整理 logging 2种方式
第一种************************************************************************************************* ...
- TestNG 单元测试框架的使用
JUnit让开发人员了解测试的实用性,尤其是在单元测试这一模块上比任何其他测试框架都要简单明了.凭借一个相当简单,务实,严谨的架构,JUnit已经能够“感染”了一大批开发人员.TestNG是一个测试框 ...
- STS临时授权访问OSS
STS临时授权访问OSS OSS 可以通过阿里云 STS (Security Token Service) 进行临时授权访问.阿里云 STS 是为云计算用户提供临时访问令牌的Web服务.通过 STS, ...
- 时效性:NABCD分析结果
N:失物招领,表白墙,二手跳骚群,里面的信息都没有真正的利用起来,好多有用的信息,全部被覆盖,同时,也有好多信息,使用户不想看到的,时效性,是个重大的问题. 例如:暑假放假,我背着书包拿着行李,等候火 ...