相关:

A.I. Learns to Drive From Scratch in Trackmania

本文讨论的是强化学习中的过度拟合问题,要知道强化学习中的过拟合和其他的监督、无监督学习的过拟合不太一样,主要是因为强化学习中的过拟合情况复杂、场景多样,难以用简单语言描述,而监督、无监督学习中的过拟合情况单一容易描述,所以在强化学习中对于过拟合的问题都是极少的,或者是要针对特定情况给出举例的,而本文就依照这个赛车游戏问题给出一种情况的强化学习过拟合问题。

在这个游戏中(A.I. Learns to Drive From Scratch in Trackmania)是使用DQN进行训练的,由于这个这个游戏环境比较复杂,因此DQN训练的agent的episode的长度增长十分的缓慢,由于episode长度增长缓慢反之导致agent对新场景见的频率极低,而这反过来加剧了agent的episodes的长度的训练困难性,于是陷入到循环困难中导致DQN难以有很好的效果和算法性能,可以看到这种问题的出现就是因为游戏难度大导致agent长期陷入到较短episodes环境中从而出现了对较短路径的过拟合于是更难以探索更长episode了。

为了解决这里的过拟合问题,原作者使用随机生成赛车出发点的方式进行训练,结果发现很好的克服了过拟合问题,使agent的性能在训练过程中有了明显提升。在这里使用随机生成出发点的方法和随机生成不同的小地图进行训练时同样的作用的,都是克服agent的过拟合的。

这时候可能有人会问,为什么在DQN运行在atari游戏环境下没有出现过拟合,而在这个赛车游戏中出现了过拟合了呢?其实答案很简单,那就是因为这里的这个赛车游戏难度明显高于大部分的atari游戏,导致agent的episode长度很短,并且难以增长,所以导致大部分的训练数据(采集到的数据)都停滞在较短的episodes的背景下,由此产生了大量的相似训练数据,于是导致出现了这里的过拟合问题;而atari游戏相对简单些,DQN在atari游戏中可以保持一个比较好的episode长度的增长速率,这样随着agent在atari游戏中episode的长度增加自然就避免了agent陷入过拟合问题中。可以认为这里的赛车游戏出现的过拟合就是因为agent陷入了较差的局部最优解中,导致大量的低质量的探索数据,从而产生了过拟合,反过来导致agent在局部最优中更加难以跳出,如此陷入反复恶化的情景中。

强化学习算法library库:(集成库)

https://github.com/Denys88/rl_games

https://github.com/Domattee/gymTouch

个人github博客地址:

https://devilmaycry812839668.github.io/

强化学习训练过程中的过度拟合(overfitting)的更多相关文章

  1. 深度学习训练过程中的学习率衰减策略及pytorch实现

    学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoc ...

  2. TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题

    一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让 ...

  3. 从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化

    从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化 神经网络在训练过程中,为应对过拟合问题,可以采用正则化方法(regularization),一种常用的正则化方法是L2正则化. 神经网络中 ...

  4. 如何使用自对弈强化学习训练一个五子棋机器人Alpha Gobang Zero

    前言 2016年3月,Alpha Go 与围棋世界冠军.职业九段棋手李世石进行围棋人机大战,以4比1的总比分获胜,在当时引起了轩然大波.2017年10月,谷歌公布了新版五子棋程序 AlphaGo Ze ...

  5. 关于HTML中,绝对定位,相对定位的理解...(学习HTML过程中的小记录)

    关于HTML中,绝对定位,相对定位的理解...(学习HTML过程中的小记录)   作者:王可利(Star·星星) HTML中 相对定位:position:relative; 绝对定位:position ...

  6. 利用JQ实现的,高仿 彩虹岛官网导航栏(学习HTML过程中的小记录)

    利用JQ实现的,高仿 彩虹岛官网导航栏(学习HTML过程中的小记录)   作者:王可利(Star·星星) 总结: 今天学习的jQ类库的使用,代码重复的比较多需要完善.严格区分大小写,在 $(" ...

  7. html/css 盒子布局 Margin 、Padding 、border 以及 清除浮动的知识 (学习HTML过程中的小记录)

    html/css  盒子布局 Margin .Padding .border 以及 清除浮动的知识 (学习HTML过程中的小记录) 作者:王可利(Star·星星) width     是"宽 ...

  8. (转)理解YOLOv2训练过程中输出参数含义

    最近有人问起在YOLOv2训练过程中输出在终端的不同的参数分别代表什么含义,如何去理解这些参数?本篇文章中我将尝试着去回答这个有趣的问题. 刚好现在我正在训练一个YOLOv2模型,拿这个真实的例子来讨 ...

  9. tensorflow训练过程中内存溢出

    罪魁祸首是训练过程中给模型传值时的如下语句:

  10. 理解YOLOv2训练过程中输出参数含义

    原英文地址: https://timebutt.github.io/static/understanding-yolov2-training-output/ 最近有人问起在YOLOv2训练过程中输出在 ...

随机推荐

  1. 【SpringCloud学习笔记(二)】用nacos做配置中心

    1. 学习目的 nacos除了作为服务注册中心之外,还能用作配置中心,可以说满足了日常的大部分需要.本次就是要学会如何使用nacos作为配置中心. 2. 操作 要使用nacos作为配置中心,需要首先引 ...

  2. maven3.x上传jar

    由于工作需要,将原有的nexus2.x升级为nexus3.x,升级后创建仓库是非常方便,但是该如何将本地的jar上传到maven仓库呢?这个博主就像无头的苍蝇找了好久,才终于找到解决方案.下面描述下该 ...

  3. 瑞芯微-I2S | 音频驱动调试基本命令和工具-基于rk3568-2

    基于Linux嵌入式设备常用调试方法很多,本文一口君把调试语音用到的工具和方法给大家做一个简单的介绍. 1. procfs.sysfs Linux系统上的/proc目录是一种文件系统,即proc文件系 ...

  4. Java 查询 MMDB 数据库

    MMDB-Lookup | GitHub Lookup.java: import java.io.File; import java.net.InetAddress; import com.faste ...

  5. Go channel 介绍

    Go 语言(Golang)中的 chan 是通道(channel)的缩写,用于在不同的 goroutine 之间进行通信.通道允许你在 goroutine 之间传递数据,从而实现同步和共享内存.下面是 ...

  6. iptables NAT

    详解什么是NAT? IPtables中SNAT.DNAT和MASQUERADE的含义 Docker网络入门 – 默认设置

  7. yum命令提示error: rpmdb: BDB0113 Thread/process,解决方法

    最近在做RHCE的题目,yum命令装vdo时,使用yum install命令的时候,提示error: rpmdb: BDB0113 Thread/process,具体错误如下: [root@node2 ...

  8. FastGPT 正式接入 Flux,准备好迎接 AI 绘画的狂风了么?

    Flux 大家最近都听说了吧?它是一款新推出的 AI 绘画模型,拳打 Stable Diffusion 3,脚踢 Midjourney,整个 AI 绘画界都沸腾了. Flux 的主创团队来自由 Sta ...

  9. MRO, mixin的解读

    本文试着将python中类继承中方法解析顺序MRO(method resolution order)和mixin梳理清楚 先MARK 类的继承中,super()的使用还是蛮多讲究的,因为看pytorc ...

  10. 击败全球上千参赛队伍,合合信息获ICDAR“文本篡改检测”赛道冠军

    AI技术的快速发展激发了人们对于美好未来的畅享,也带来了潜在的危机,数据泄露.电信诈骗等系列风险与隐患开始浮出水面.利用科技手段构建可信的技术发展环境,保护使用者的信息及财产安全,正在成为行业共识. ...