spark mllib k-means算法实现
package iie.udps.example.spark.mllib; import java.util.regex.Pattern; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.clustering.KMeans;
import org.apache.spark.mllib.clustering.KMeansModel;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors; /**
* Example using MLLib KMeans from Java.
*
* spark-submit --class iie.udps.example.spark.mllib.JavaKMeans --master
* yarn-cluster --num-executors 15 --driver-memory 512m --executor-memory 2g
* --executor-cores 2 /home/xdf/test2.jar /user/xdf/Example.txt 10 2
*/
public final class JavaKMeans { @SuppressWarnings("serial")
private static class ParsePoint implements Function<String, Vector> {
private static final Pattern SPACE = Pattern.compile(","); @Override
public Vector call(String line) {
String[] tok = SPACE.split(line);
// 统一数据维度为3,此处没有考虑其他异常数据情况
if (tok.length < 3) {
tok = SPACE.split(line + ",0");
for (int i = tok.length; i < 3; i++) {
tok[i] = "0";
}
}
if (tok.length > 3) {
tok = SPACE.split("0,0,0");
}
double[] point = new double[tok.length];
for (int i = 0; i < tok.length; ++i) {
point[i] = Double.parseDouble(tok[i]);
}
return Vectors.dense(point);
} } public static void main(String[] args) {
if (args.length < 3) {
System.err
.println("Usage: JavaKMeans <input_file> <k> <max_iterations> [<runs>]");
System.exit(1);
}
String inputFile = args[0]; // 要读取的文件
int k = Integer.parseInt(args[1]); // 聚类个数
int iterations = Integer.parseInt(args[2]); // 迭代次数
int runs = 1; // 运行算法次数 if (args.length >= 4) {
runs = Integer.parseInt(args[3]);
}
SparkConf sparkConf = new SparkConf().setAppName("JavaKMeans");
// sparkConf.set("spark.default.parallelism", "4");
// sparkConf.set("spark.akka.frameSize", "1024");
System.setProperty(
"dfs.client.block.write.replace-datanode-on-failure.enable",
"true");
System.setProperty(
"dfs.client.block.write.replace-datanode-on-failure.policy",
"never");
// sparkConf.set(
// "dfs.client.block.write.replace-datanode-on-failure.enable",
// "true");
// sparkConf.set(
// "dfs.client.block.write.replace-datanode-on-failure.policy",
// "never");
JavaSparkContext sc = new JavaSparkContext(sparkConf);
// 指定文件分片数
JavaRDD<String> lines = sc.textFile(inputFile,2400);// ,1264 , 1872,2400
JavaRDD<Vector> points = lines.map(new ParsePoint()); KMeansModel model = KMeans.train(points.rdd(), k, iterations, runs,
KMeans.K_MEANS_PARALLEL()); // System.out.println("Vector 98, 345, 90 belongs to clustering :"
// + model.predict(Vectors.dense(98, 345, 90)));
// System.out.println("Vector 748, 965, 202 belongs to clustering :"
// + model.predict(Vectors.dense(748, 965, 202)));
// System.out.println("Vector 310, 554, 218 belongs to clustering :"
// + model.predict(Vectors.dense(310, 554, 218))); System.out.println("Cluster centers:");
for (Vector center : model.clusterCenters()) {
System.out.println(" " + center); }
double cost = model.computeCost(points.rdd());
System.out.println("Cost: " + cost); sc.stop();
}
}
spark mllib k-means算法实现的更多相关文章
- Spark MLlib FPGrowth关联规则算法
一.简介 FPGrowth算法是关联分析算法,它采取如下分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-tree),但仍保留项集关联信息.在算法中使用了一种称为频繁模式树(Frequent ...
- Spark MLlib KMeans 聚类算法
一.简介 KMeans 算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把分类样本点分到各个簇.然后按平均法重新计算各个簇的质心,从而确定新的簇心.一直迭代,直到簇心的移动距离小于某个给定的值. ...
- Spark MLlib协同过滤算法
算法说明 协同过滤(Collaborative Filtering,简称CF,WIKI上的定义是:简单来说是利用某个兴趣相投.拥有共同经验之群体的喜好来推荐感兴趣的资讯给使用者,个人透过合作的机制给予 ...
- Spark mllib 随机森林算法的简单应用(附代码)
此前用自己实现的随机森林算法,应用在titanic生还者预测的数据集上.事实上,有很多开源的算法包供我们使用.无论是本地的机器学习算法包sklearn 还是分布式的spark mllib,都是非常不错 ...
- KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...
- 十二、spark MLlib的scala示例
简介 spark MLlib官网:http://spark.apache.org/docs/latest/ml-guide.html mllib是spark core之上的算法库,包含了丰富的机器学习 ...
- Spark Mllib里如何生成KMeans的训练样本数据、生成线性回归的训练样本数据、生成逻辑回归的训练样本数据和其他数据生成
不多说,直接上干货! 具体,见 Spark Mllib机器学习(算法.源码及实战详解)的第2章 Spark数据操作
- Spark Mllib里的向量标签概念、构成(图文详解)
不多说,直接上干货! Labeled point: 向量标签 向量标签用于对Spark Mllib中机器学习算法的不同值做标记. 例如分类问题中,可以将不同的数据集分成若干份,以整数0.1.2,... ...
- Spark MLlib架构解析(含分类算法、回归算法、聚类算法和协同过滤)
Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基 ...
随机推荐
- ASP.NET MVC的Ajax.ActionLink 的HttpMethod="Get" 一个重复请求的BUG
这段时间使用BootStrap+Asp.net Mvc5开发项目,Ajax.ActionLink遇到一个重复提交的BUG,代码如下: @model IList<WFModel.WF_Temp&g ...
- RemoveDPC
HOOKSSDT中加入了DPC之后 要取消DPC 首先找到DPCHookSSDT.sys的基地址和大小 通过枚举所有DPC的地址 将在范围之内的DPC定时器全部移除 枚举DPC: WinXP: 1. ...
- nginx 配置优化的几个参数
nginx 配置优化的几个参数 2011-04-22 本文地址: http://blog.phpbean.com/a.cn/7/ --水平有限欢迎指正-- -- 最近在服务器上搞了一些nginx 研究 ...
- LCD驱动 15-3
测试:1:make menuconfig去掉原来的驱动程序 Device Drivers ---> Graphics support ---> ...
- 数列F[19] + F[13]的值
已知数列如下:F[1]=1, F[2]=1, F[3]=5,......,F[n] =F[n-1] + 2*F[n-2],求F[19] + F[13]? #include <stdio.h> ...
- numpy 总结
1.array.sum() from numpy import * import operator group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) ...
- sql左连接,右连接,内连接
1.sql查询时什么叫左连接和右连接 左连接和右连接都是外部连接,也就是区别于内部连接,它对不满足连接条件的行并不是象内部连接一样将数据完全过滤掉,而是保留一部分数据,行数不会减少. 左或 ...
- UML学习入门就这一篇文章
1.1 UML基础知识扫盲 UML这三个字母的全称是Unified Modeling Language,直接翻译就是统一建模语言,简单地说就是一种有特殊用途的语言. 你可能会问:这明明是一种图形,为什 ...
- JS内置对象
字符串对象 <script> //字符串对象 var str = "Hello worldlsgjlsjg"; document.write('string.lengt ...
- IOS UITableView的分隔线多出问题
如题,有时显示UITableView多出部分在页面时,下面会显示处多出的行, 此时应该在UITableView初始化时设置为Group if (_tableView == nil) { _tableV ...