首先我们知道,对于所有种情况,我们可以将每一位可以放的

数的值加起来,所有位置的乘起来,等于的就是最后的答案,具体

为什么正确,可以根据乘法分配律来想一想。

那么对于所有不做要求的,快速幂直接算就行了,然后快排下,就知道

每个位置不放那些值,减掉后乘进去就行了。

/**************************************************************
Problem:
User: BLADEVIL
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ //By BLADEVIL
const
d39 =; var
n, m, k :longint;
a, b :array[..] of longint;
ans :int64; procedure swap(var a,b:longint);
var
c :longint;
begin
c:=a; a:=b; b:=c;
end; procedure qs(low,high:longint);
var
i, j, xx, yy :longint;
begin
i:=low; j:=high;
xx:=a[(i+j) div ]; yy:=b[(i+j) div ];
while i<j do
begin
while (a[i]<xx) or (a[i]=xx) and (b[i]<yy) do inc(i);
while (a[j]>xx) or (a[j]=xx) and (b[j]>yy) do dec(j);
if i<=j then
begin
swap(a[i],a[j]);
swap(b[i],b[j]);
inc(i); dec(j);
end;
end;
if i<high then qs(i,high);
if j>low then qs(low,j);
end; procedure init;
var
i :longint;
begin
read(n,m,k);
for i:= to k do read(a[i],b[i]);
qs(,k);
end; function mi(a,b:int64):int64;
var
sum :int64;
begin
sum:=a;
mi:=;
while b<> do
begin
if b mod = then mi:=mi*sum mod d39;
sum:=sum*sum mod d39;
b:=b div ;
end;
end; procedure main;
var
i :longint;
sum, x, y, z :int64;
begin
sum:=m;
x:=-;
for i:= to k do
begin
if a[i]<>x then
begin
dec(sum);
x:=a[i];
end;
end;
x:=n; y:=n+;
if x mod = then x:=x div else y:=y div ;
x:=x mod d39;
y:=y mod d39;
x:=x*y mod d39;
ans:=mi(x,sum);
for i:= to k do if (a[i]=a[i-]) and (b[i]=b[i-]) then b[i-]:=;
y:=-;
z:=-;
for i:= to k do
begin
if a[i]<>y then
begin
if i<> then ans:=ans*z mod d39;
z:=x;
y:=a[i];
z:=((x-b[i]) mod d39+d39) mod d39;
end else z:=((z-b[i])mod d39+d39) mod d39;
end;
if z<>- then ans:=ans*z mod d39;
writeln(ans);
end; begin
init;
main;
end.

bzoj 2751 快速幂的更多相关文章

  1. BZOJ 2751 容易题(easy) 快速幂+快速乘

    2751: [HAOI2012]容易题(easy) Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i] ...

  2. BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )

    BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...

  3. BZOJ.4818.[SDOI2017]序列计数(DP 快速幂)

    BZOJ 洛谷 竟然水过了一道SDOI!(虽然就是很水...) 首先暴力DP,\(f[i][j][0/1]\)表示当前是第\(i\)个数,所有数的和模\(P\)为\(j\),有没有出现过质数的方案数. ...

  4. BZOJ 3160: 万径人踪灭 FFT+快速幂+manacher

    BZOJ 3160: 万径人踪灭 题目传送门 [题目大意] 给定一个长度为n的01串,求有多少个回文子序列? 回文子序列是指从原串中找出任意个,使得构成一个回文串,并且位置也是沿某一对称轴对称. 假如 ...

  5. [BZOJ 1297][SCOI 2009]迷路(矩阵快速幂)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1297 分析:如果每条边的边权都是1,那么就相当于对邻接矩阵自乘T次(因为写一下递推式子 ...

  6. 【BZOJ】1008: [HNOI2008]越狱(快速幂)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1008 刚开始看不会做啊,以为是dp,但是数据太大!!!所以一定有log的算法或者O1的算法,,,,还 ...

  7. bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...

  8. bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化

    3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 613  Solved: 256[Submit][Status] ...

  9. BZOJ 4000: [TJOI2015]棋盘( 状压dp + 矩阵快速幂 )

    状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) ------------------------------------------------------- ...

随机推荐

  1. win7 C# winForm编程 savefiledialog 不能弹出保存窗体

    public void ResMsg()        {            while (isRecMsg)            {                //准备一个数组 准备接收 ...

  2. PHP file_get_contents于curl性能效率比较

    说明大部分内容整理来源于网络,期待你的补充.及不当之处的纠正: 1)fopen/file_get_contents 每次请求远程URL中的数据都会重新做DNS查询,并不对DNS信息进行缓存.但是CUR ...

  3. STL之容器基本操作

    容器类 STL Container Header Applications vector <vector> 直接访问任意元素,快速插入.删除尾部元素 deque <deque> ...

  4. python基础学习笔记第四天 list 元祖 字典

    一 LIST方法 列表操作包含以下函数:1.cmp(list1, list2):比较两个列表的元素 2.len(list):列表元素个数 3.max(list):返回列表元素最大值 4.min(lis ...

  5. python爬虫-urllib模块

    urllib 模块是一个高级的 web 交流库,其核心功能就是模仿web浏览器等客户端,去请求相应的资源,并返回一个类文件对象.urllib 支持各种 web 协议,例如:HTTP.FTP.Gophe ...

  6. [terry笔记]Oracle数据泵-schema导入导出

    数据泵是10g推出的功能,个人倒数据比较喜欢用数据泵. 其导入的时候利用remap参数很方便转换表空间以及schema,并且可以忽略服务端与客户端字符集问题(exp/imp需要排查字符集). 数据泵也 ...

  7. poj 2507Crossed ladders <计算几何>

    链接:http://poj.org/problem?id=2507 题意:哪个直角三角形,一直角边重合, 斜边分别为 X, Y, 两斜边交点高为 C , 求重合的直角边长度~ 思路: 设两个三角形不重 ...

  8. IE浏览器各版本的CSS Hack

    IE浏览器各版本的CSS   Hack 如下示例: .test{ color:black;/*W3C*/ color:red\9;/* IE6-IE10 */ _color:black;/*IE6*/ ...

  9. Android 创建单例模式的几种方法

    java模式之单例模式:单例模式确保一个类只有一个实例,自行提供这个实例并向整个系统提供这个实例.特点:1,一个类只能有一个实例2,自己创建这个实例3,整个系统都要使用这个实例 Singleton模式 ...

  10. 基于opencv 的图片模糊判断代码

    #include"cv.h"  #include"highgui.h"  #include<iostream>  using namespace s ...