首先我们知道,对于所有种情况,我们可以将每一位可以放的

数的值加起来,所有位置的乘起来,等于的就是最后的答案,具体

为什么正确,可以根据乘法分配律来想一想。

那么对于所有不做要求的,快速幂直接算就行了,然后快排下,就知道

每个位置不放那些值,减掉后乘进去就行了。

/**************************************************************
Problem:
User: BLADEVIL
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ //By BLADEVIL
const
d39 =; var
n, m, k :longint;
a, b :array[..] of longint;
ans :int64; procedure swap(var a,b:longint);
var
c :longint;
begin
c:=a; a:=b; b:=c;
end; procedure qs(low,high:longint);
var
i, j, xx, yy :longint;
begin
i:=low; j:=high;
xx:=a[(i+j) div ]; yy:=b[(i+j) div ];
while i<j do
begin
while (a[i]<xx) or (a[i]=xx) and (b[i]<yy) do inc(i);
while (a[j]>xx) or (a[j]=xx) and (b[j]>yy) do dec(j);
if i<=j then
begin
swap(a[i],a[j]);
swap(b[i],b[j]);
inc(i); dec(j);
end;
end;
if i<high then qs(i,high);
if j>low then qs(low,j);
end; procedure init;
var
i :longint;
begin
read(n,m,k);
for i:= to k do read(a[i],b[i]);
qs(,k);
end; function mi(a,b:int64):int64;
var
sum :int64;
begin
sum:=a;
mi:=;
while b<> do
begin
if b mod = then mi:=mi*sum mod d39;
sum:=sum*sum mod d39;
b:=b div ;
end;
end; procedure main;
var
i :longint;
sum, x, y, z :int64;
begin
sum:=m;
x:=-;
for i:= to k do
begin
if a[i]<>x then
begin
dec(sum);
x:=a[i];
end;
end;
x:=n; y:=n+;
if x mod = then x:=x div else y:=y div ;
x:=x mod d39;
y:=y mod d39;
x:=x*y mod d39;
ans:=mi(x,sum);
for i:= to k do if (a[i]=a[i-]) and (b[i]=b[i-]) then b[i-]:=;
y:=-;
z:=-;
for i:= to k do
begin
if a[i]<>y then
begin
if i<> then ans:=ans*z mod d39;
z:=x;
y:=a[i];
z:=((x-b[i]) mod d39+d39) mod d39;
end else z:=((z-b[i])mod d39+d39) mod d39;
end;
if z<>- then ans:=ans*z mod d39;
writeln(ans);
end; begin
init;
main;
end.

bzoj 2751 快速幂的更多相关文章

  1. BZOJ 2751 容易题(easy) 快速幂+快速乘

    2751: [HAOI2012]容易题(easy) Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i] ...

  2. BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )

    BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...

  3. BZOJ.4818.[SDOI2017]序列计数(DP 快速幂)

    BZOJ 洛谷 竟然水过了一道SDOI!(虽然就是很水...) 首先暴力DP,\(f[i][j][0/1]\)表示当前是第\(i\)个数,所有数的和模\(P\)为\(j\),有没有出现过质数的方案数. ...

  4. BZOJ 3160: 万径人踪灭 FFT+快速幂+manacher

    BZOJ 3160: 万径人踪灭 题目传送门 [题目大意] 给定一个长度为n的01串,求有多少个回文子序列? 回文子序列是指从原串中找出任意个,使得构成一个回文串,并且位置也是沿某一对称轴对称. 假如 ...

  5. [BZOJ 1297][SCOI 2009]迷路(矩阵快速幂)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1297 分析:如果每条边的边权都是1,那么就相当于对邻接矩阵自乘T次(因为写一下递推式子 ...

  6. 【BZOJ】1008: [HNOI2008]越狱(快速幂)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1008 刚开始看不会做啊,以为是dp,但是数据太大!!!所以一定有log的算法或者O1的算法,,,,还 ...

  7. bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...

  8. bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化

    3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 613  Solved: 256[Submit][Status] ...

  9. BZOJ 4000: [TJOI2015]棋盘( 状压dp + 矩阵快速幂 )

    状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) ------------------------------------------------------- ...

随机推荐

  1. mysql连接查询经典小例题

    mysql连接查询: Mysql连接查询支持多表连接 对同一张表可以重复连接多次(别名在多次连接同一张表时很重要) 例题1: 下面有2张表 teams表 比赛结果表:result 问题: 得出一张表: ...

  2. 画画板--第三方开源--DrawableView

    Android上的第三方开源DrawableView支持手写,类似于写字板.DrawableView支持改变画笔颜色,画笔线条粗细,画布的手势缩放和拖曳显示部分区域.并最终支持将手绘的图保存到本地.在 ...

  3. Win10下IIS配置图解、MVC项目发布图解、IIS添加网站图解

    Win10下IIS配置 .找到控制面板:[开始]菜单鼠标右击,打开[控制面板] .打开控制面板,点击[程序],点击[启用或关闭Windows功能] 下一步,点击[启用虎关闭Windows功能] . 开 ...

  4. linux网络子系统内核分析

    1.选择路由 若要将数据包发至PC2,则linux系统通过查询路由表可知168.1.1.10(目的地址)的网关地址为192.168.1.1,此时linux系统选择网卡1发送数据包. 2.邻居子系统(通 ...

  5. 远程连接数据库(通过pgAdmin)

    1.编辑/var/lib/pgsql/data/pg_hba.conf,增加语句  host all all 192.168.105.225/36 trust 让数据库接受网络 192.168.105 ...

  6. C#模糊查询绑定datagridview

    private CollectionViewSource wgdData = new CollectionViewSource(); private DataTable Ds_wgd { get { ...

  7. CK表达式编辑器

    1.      什么是表达式编辑器? 这个工具允许技术员传入一系列的参数,由用户编辑一个公式返回一种特定的结果.之所以需要使用表达式编辑器,就是因为用户编辑的公式经常变,技术员无法想出一办法来适应用户 ...

  8. 菜鸟学习Spring——第一个例子

    一.概述 原来我们利用工厂来实现灵活的配置.现在利用Spring以后把这个交给了IoC容器管理.我们只要在XML文件上配上就可以了这样的话就节省了很多开发时间我们不需要知道后面的有多少只要动态的配上类 ...

  9. DB2中的转义字符

    1.数据库脚本 )); ,'20%'); ,'OLIVER_QIN'); ,'AA''') 2.以下是DB2的转义字符 2.1 对“%”的转义 SELECT * FROM OLIVER_11 WHER ...

  10. Base

    base 关键字用于从派生类中访问基类的成员: 调用基类上已被其他方法重写的方法. 指定创建派生类实例时应调用的基类构造函数. 基类访问只能在构造函数.实例方法或实例属性访问器中进行. 从静态方法中使 ...