1 $\bbR^n$ 中集合 $E$ 称为可测的 (measurable), 如果 $$\bee\label{3.2:Caratheodory} m^*T=m^*(T\cap E)+m^*(T\cap E^c),\quad \forall\ T\subset \bbR^n. \eee$$

(1) 所有可测集构成的集族记为 $\scrM$.

(2) 这里的 $T$ 称为试验集 (test set).

(3) \eqref{3.2:Caratheodory} 称为 Caratheodory 条件.

(4) 当 $E\in \scrM$ 时, 记 $mE$ 为 $E$ 的测度: $mE=m^*E$.

2  $$\bex E\mbox{ 可测}\lra m^*I=m^*(I\cap E)+m^*(I\cap E^c),\quad \forall\ I\subset \bbR^n. \eex$$

证明: $\ra$ 显然.

$\la$ 由外测度的次可数可加性知 $\leq$ 成立, 往证 $\geq$: $$\beex \bea m^*T+\ve&>\sum_{i=1}^\infty |I_i|\quad\sex{T\subset \cup_{i=1}^\infty I_i}\\ &=\sum_{i=1}^\infty m^*I_i\\ &=\sum_{i=1}^\infty \sez{m^*(I_i\cap E)    +m^*(I_i\cap E^c)}\\ &\geq m^*\sez{\cup_{i=1}^\infty  (I_i\cap E)} +m^*\sez{\cup_{i=1}^\infty (I_i\cap E^c)}\\ &\geq m^*(T\cap E)+m^*(T\cap E^c)\\ &\quad\sex{T\cap E\subset \cup_{i=1}^\infty (I_i\cap E),\quad  T\cap E^c\subset \cup_{i=1}^\infty (I_i\cap E^c}. \eea \eeex$$

3  $$\bee\label{3.2:measure_property_sepration} E\mbox{ 可测}\lra m^*(A\cup B)=m^*A+m^*B,\quad\forall\ A\subset E, B\subset E^c. \eee$$

证明: $\ra$ 取试验集 $T=A\cup B$ 即可.

$\la$  $$\bex m^*T=m^*\sez{(T\cap E)\cup (T\cap E^c)}    =m^*(T\cap E)+m^*(T\cap E^c). \eex$$

4 可测集的性质:

(1) $E$ 可测 $\ra E^c$ 可测.

证明:    $$\bex    m^*T=m^*(T\cap E)+m^*(T\cap E^c)    =m^*(T\cap (E^c)^c)+m^*(T\cap E^c).    \eex$$

(2) $E_1,E_2$ 可测 $\ra E_1\cup E_2, E_1\cap E_2$ 可测.

证明: 由     $$\bex    E_1\cap E_2=\sex{E_1^c\cup E_2^c}^c    \eex$$

知仅须证明  $E_1\cup E_2$ 可测:    $$\beex    \bea    m^*T    &=m^*(T\cap E_1)+m^*(T\cap E_1^c)\\    &=m^*(T\cap E_1) +m^*(T\cap E_1^c\cap E_2)+m^*(T\cap E_1^c\cap E_2^c)\\    &=m^*(T\cap (E_1\cup E_2)) +m^*(T\cap(E_1\cup E_2)^c)\\    &\quad\sex{\mbox{ 由 }\eqref{3.2:measure_property_sepration} \mbox{ 及 }E_1\cup (E_1^c\cap E_2)=E_1\cup E_2}.    \eea    \eeex$$

(3) $\sed{E_i}_{i=1}^n$ 可测 $\dps{\cup_{i=1}^n E_i, \cap_{i=1}^n E_i}$ 可测.

证明: 利用性质 (2) 及数学归纳法.

(4) $\sed{E_i}_{i=1}^\infty$ 可测 $\dps{\ra \cup_{i=1}^\infty E_i}$ 可测; 且若 $E_i$ 两两不交, 则     $$\bee\label{3.2:measure_property_countably_additivity}    m\sex{\cup_{i=1}^\infty E_i}=\sum_{i=1}^\infty mE_i.    \eee$$

证明: 由    $$\bex    \cup_{i=1}^\infty E_i    =E_1\cup     [E_2\bs E_1]\cup     [E_3\bs(E_1\cup E_2)]\cup    \cdots    \eex$$

知仅须验证当 $E_i$ 两两不交时, $\dps{\cup_{i=1}^\infty E_i}$ 可测, 且 \eqref{3.2:measure_property_countably_additivity} 成立:    $$\beex    \bea    m^*T&=m^*\sez{T\cap \sex{\cup_{i=1}^j E_i}}    +m^*\sez{T\cap \sex{\cup_{i=1}^j E_i}^c}\\    &\geq m^*\sez{\cup_{i=1}^j (T\cap E_i)}    +m^*\sez{T\cap\sex{\cup_{i=1}^\infty E_i}^c}\\    &=\sum_{i=1}^j m^*(T\cap E_i)    +m^*\sez{T\cap\sex{\cup_{i=1}^\infty E_i}^c}\\    &\quad\sex{E_i\mbox{ 两两不交, 利用 }\eqref{3.2:measure_property_sepration}\mbox{ 及数学归纳法}};    \eea    \eeex$$    $$\beex    \bea    m^*T&\geq \sum_{i=1}^\infty m^*(T\cap E_i) +m^*\sez{T\cap\sex{\cup_{i=1}^\infty E_i}^c}\\    &\geq m^*\sez{T\cap \sex{\cup_{i=1}^\infty  E_i}}    +m^*\sez{T\cap\sex{\cup_{i=1}^\infty E_i}^c}.    \eea    \eeex$$

(5) $\sed{E_i}_{i=1}^\infty$ 可测 $\dps{\ra \cap_{i=1}^\infty E_i}$ 可测.

(6) $\sed{E_i}$ 单增可测 $\dps{\ra m\sex{\lim_{i\to\infty}E_i}=\lim_{i\to\infty}mE_i}$.

证明:    $$\beex    \bea    m\sex{\lim_{i\to\infty}E_i}    &=m\sex{\cup_{i=1}^\infty E_i}\\    &=m\sex{\cup_{i=1}^\infty F_i}\quad\sex{F_1=E_1,F_2=E_2\bs E_1,F_3=E_3\bs E_2,\cdots}\\    &=\sum_{i=1}^\infty m F_i\\    &=\lim_{j\to\infty} \sum_{i=1}^j m F_i\\    &=\lim_{j\to\infty} \sez{m E_1+\sum_{i=2}^j (mE_i-mE_{i-1})}\\    &=\lim_{j\to\infty} mE_j.    \eea    \eeex$$

(7) $\sed{E_i}$ 单减可测, $mE_1<\infty$ $\dps{\ra m\sex{\lim_{i\to\infty} E_i}=\lim_{i\to\infty}mE_i}$.

证明:    $$\beex    \bea    m\sex{\lim_{i\to\infty}E_i}    &=m\sex{\cap_{i=1}^\infty E_i}\\    &=m\sez{E_1\bs \sex{E_1\bs \cap_{i=1}^\infty E_i}}\\    &=m\sez{E_1\bs \cup_{i=1}^\infty (E_1\bs E_i)}\\    &=m E_1-m\sez{\cup_{i=1}^\infty (E_1\bs E_i)}\\    &\quad\sex{\mbox{由 }mE_1<\infty\mbox{ 及 }\cup_{i=1}^\infty (E\bs E_i)\mbox{ 可测}}\\&= mE_1-\lim_{i\to\infty}m (E_1\bs E_i)\\    &=mE_1-\lim_{i\to\infty}(mE_1-mE_i)\\    &=\lim_{i\to\infty}mE_i.    \eea    \eeex$$

5 作业: Page 75 T 6, T 7.

[实变函数]3.2 可测集 (measurable set)的更多相关文章

  1. [实变函数]4.1 可测函数 (measurable function) 及其性质

    1 记号 (notations) (1) 广义实数: $\overline{\bbR}=\bbR\cup\sed{-\infty}\cup\sed{+\infty}$. (2) 本章主要考虑     ...

  2. [实变函数]5.2 非负简单函数的 Lebesgue 积分

    1 设        $$\bex        \phi(x)=\sum_{i=1}^j c_i\chi_{E_i}(x),\quad c_i\geq 0,        \eex$$ 其中     ...

  3. [实变函数]5.3 非负可测函数的 Lebesgue 积分

    本节中, 设 $f,g,f_i$ 是可测集 $E$ 上的非负可测函数, $A,B$ 是 $E$ 的可测子集.       1 定义: (1) $f$ 在 $E$ 上的 Lebesgue 积分      ...

  4. [实变函数]5.6 Lebesgue 积分的几何意义 $\bullet$ Fubini 定理

    1 本节推广数学分析中的 Fubini 定理. 为此, 先引入 (1)(从低到高) 对 $A\subset \bbR^p, B\subset\bbR^q$, $$\bex A\times B=\sed ...

  5. [实变函数]2.1 度量空间 (metric space), $n$ 维 Euclidean 空间

    1 回忆:    $$\bex    \lim_{n\to\infty}a_n=a\lra \forall\ \ve>0,\ \exists\ N,\ \forall\ n\geq N,\mbo ...

  6. [实变函数]2.2 聚点 (cluster point), 内点 (interior point), 界点 (boundary point)

    设 $E\subset \bbR^n, P_0\in \bbR^n$. 1 若 $\exists\ U(P_0)\subset E$, 则称 $P_0$ 为 $E$ 的内点 (interior poi ...

  7. [实变函数]2.3 开集 (open set), 闭集 (closed set), 完备集 (complete set)

    1        $$\beex \bea E\mbox{ 是开集}&\lra E^o=E\\        &\lra \forall\ P_0\in E,\ \exists\ U( ...

  8. [实变函数]2.5 Cantor 三分集

    1 Cantor 三分集的构造:                $$\bex P=\cap_{n=1}^\infty F_n.                   \eex$$ 2 Cantor 三分 ...

  9. [实变函数]3.1 外测度 (outer measure)

    1 并不是所有的集合都可求测度. 我们的想法是先对 $\bbR^n$ 中的任一集合定义一个``外 测度'' (outer measure), 然后再加上适当的条件 (Caratheodory 条件), ...

随机推荐

  1. 磁盘参数修订[转自vbird]

    某些时刻,你可能会希望修改一下目前文件系统的一些相关信息,举例来说,你可能要修改 Label name , 或者是 journal 的参数,或者是其他硬盘运行时的相关参数 (例如 DMA 启动与否-) ...

  2. Python 基础语法(四)

    Python 基础语法(四) --------------------------------------------接 Python 基础语法(三)------------------------- ...

  3. maven&&gradle

    https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html http://maven.apache. ...

  4. c# webbrowser 错误捕获

    private void Form1_Load(object sender, EventArgs e) { webBrowser1.Url = new Uri("about:blank&qu ...

  5. ISV 和SI 是什么

    ISV是Independent Software Vendors 的英文缩写,意为"独立软件开发商",特指专门从事软件的开发.生产.销售和服务的企业,如微软(Microsoft). ...

  6. 002. 在HTML页面嵌入循环代码

    <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default2.aspx.cs ...

  7. unity, monodevelop 不安全的代码只会在使用/unsafe编译的情况下出现

    http://blog.sina.com.cn/s/blog_6b3661a90102wx2g.html

  8. docker 镜像的保存以及导入

    docker 镜像的保存 docker save -o  davename.tar  images docker 镜像的导入 docker  import -  importname < tar ...

  9. linux更改启动级别后,无法启动的问题解决

    装好之后,配置好IP,启动后也能上网了,然后我修改了系统的启动级别(默认为3,我改为了5),意思是让他能够启动桌面. 我是这么设置的: 1.vi命令打开/etc/inittab文件,可以看到如下描述 ...

  10. Spark(二): 内存管理

    Spark 作为一个以擅长内存计算为优势的计算引擎,内存管理方案是其非常重要的模块: Spark的内存可以大体归为两类:execution和storage,前者包括shuffles.joins.sor ...