SparkSQL读写外部数据源-json文件的读写
object JsonFileTest {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder()
.master("local")
.appName("JsonFileTest")
.getOrCreate() import spark.implicits._ //将parquet文件数据转化成json文件数据
val sessionDf = spark.read.parquet(s"${BASE_PATH}/trackerSession")
sessionDf.show() sessionDf.write.json(s"${BASE_PATH}/json") //读取json文件数据
val jsonDF = spark.read.json(s"${BASE_PATH}/json")
jsonDF.show() //可以从JSON Dataset(类型为String)中创建一个DF
val jsonDataset = spark.createDataset(
"""{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
val otherJsonDF = spark.read.json(jsonDataset)
otherJsonDF.show() //primitivesAsString(默认为false) 表示将基本类型转化为string类型,这里的基本类型包括:boolean、int、long、float、double
//prefersDecimal(默认是false)表示在primitivesAsString为false的时候,将float,double转成DecimalType
val jsonDataset_1 = spark.createDataset(
"""{"name":"Yin","address":{"is_old":true,"area":23000.34}}""" :: Nil)
var otherJsonDF_1 = spark.read.json(jsonDataset_1)
otherJsonDF_1.printSchema()
/*
root
|-- address: struct (nullable = true)
| |-- area: double (nullable = true)
| |-- is_old: boolean (nullable = true)
|-- name: string (nullable = true)
*/ var optsMap = Map("primitivesAsString" -> "true", "prefersDecimal" -> "true")
otherJsonDF_1 = spark.read.options(optsMap).json(jsonDataset_1)
otherJsonDF_1.printSchema()
/*
root
|-- address: struct (nullable = true)
| |-- area: string (nullable = true)
| |-- is_old: string (nullable = true)
|-- name: string (nullable = true)
*/ optsMap = Map("primitivesAsString" -> "false", "prefersDecimal" -> "true")
otherJsonDF_1 = spark.read.options(optsMap).json(jsonDataset_1)
otherJsonDF_1.printSchema()
/*
root
|-- address: struct (nullable = true)
| |-- area: decimal(7,2) (nullable = true)
| |-- is_old: boolean (nullable = true)
|-- name: string (nullable = true)
*/ //allowComments(默认是false),表示是否支持json中含有java/c格式的注释
spark.read.option("allowComments", "true").json(Seq("""{"name":/* hello */"Yin","address":{"is_old":true,"area":23000.34}}""").toDS()).show() //allowUnquotedFieldNames(默认是false),表示是否支持json中含有没有引号的域名
spark.read.option("allowUnquotedFieldNames", "true").json(Seq("""{name:"Yin","address":{"is_old":true,"area":23000.34}}""").toDS()).show() //allowSingleQuotes(默认是true),表示是否支持json中含有单引号的域名或者值
spark.read.option("allowSingleQuotes", "true").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":23000.34}}""").toDS()).show() //allowNumericLeadingZeros(默认是false),表示是否支持json中含有以0开头的数值
spark.read.option("allowNumericLeadingZeros", "true").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":0023000.34}}""").toDS()).show() //allowNonNumericNumbers(默认是false),表示是否支持json中含有NaN(not a number)
spark.read.option("allowNonNumericNumbers", "true").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":NaN}}""").toDS()).show() //allowBackslashEscapingAnyCharacter(默认是false),表示是否支持json中含有反斜杠,且将反斜杠忽略掉
spark.read.option("allowBackslashEscapingAnyCharacter", "true").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":"\$23000"}}""").toDS()).show() //mode(默认是PERMISSIVE),表是碰到格式解析错误的json的处理行为是:
//PERMISSIVE 表示比较宽容的。如果某条格式错误,则新增一个字段,字段名为columnNameOfCorruptRecord的值,字段的值是错误格式的json字符串,其他的是null
spark.read.option("mode", "PERMISSIVE").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":3000}}""",
"""{'name':'Yin',"address":{"is_old":true,"area":\3000}}""").toDS()).show()
/*
+--------------------+-----------+----+
| _corrupt_record| address|name|
+--------------------+-----------+----+
| null|[3000,true]| Yin|
|{'name':'Yin',"ad...| null|null|
+--------------------+-----------+----+
*/
spark.read.option("mode", "PERMISSIVE").option("columnNameOfCorruptRecord", "customer_column").json(
Seq("""{'name':'Yin',"address":{"is_old":true,"area":3000}}""",
"""{'name':'Yin',"address":{"is_old":true,"area":\3000}}""").toDS()).show()
/*
+-----------+--------------------+----+
| address| customer_column|name|
+-----------+--------------------+----+
|[3000,true]| null| Yin|
| null|{'name':'Yin',"ad...|null|
+-----------+--------------------+----+
*/
//DROPMALFORMED 表示丢掉错误格式的那条记录
spark.read.option("mode", "DROPMALFORMED").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":3000}}""",
"""{'name':'Yin',"address":{"is_old":true,"area":\3000}}""").toDS()).show()
/*
+-----------+----+
| address|name|
+-----------+----+
|[3000,true]| Yin|
+-----------+----+
*/
//FAILFAST 碰到解析错误的记录直接报错
spark.read.option("mode", "FAILFAST").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":3000}}""",
"""{'name':'Yin',"address":{"is_old":true,"area":\3000}}""").toDS()).show() //dateFormat(默认值为yyyy-MM-dd) 表示json中时间的字符串格式(对应着DataType)
val customSchema = new StructType(Array(StructField("name", StringType, true),
StructField("date", DateType, true)))
val dataFormatDF =
spark.read.schema(customSchema).option("dateFormat", "dd/MM/yyyy HH:mm").json(Seq(
"""{'name':'Yin',"date":"26/08/2015 18:00"}""").toDS())
dataFormatDF.write.mode(SaveMode.Overwrite).option("dateFormat", "yyyy/MM/dd").json("testjson")
spark.read.json("testjson").show() //timestampFormat(默认值为yyyy-MM-dd'T'HH:mm:ss.SSSZZ) 表示json中时间的字符串格式(对应着TimestampType)
val customSchema_1 = new StructType(Array(StructField("name", StringType, true),
StructField("date", TimestampType, true)))
val timestampFormatDf =
spark.read.schema(customSchema_1).option("timestampFormat", "dd/MM/yyyy HH:mm").json(Seq(
"""{'name':'Yin',"date":"26/08/2015 18:00"}""").toDS()) val optMap = Map("timestampFormat" -> "yyyy/MM/dd HH:mm", DateTimeUtils.TIMEZONE_OPTION -> "GMT")
timestampFormatDf.write.mode(SaveMode.Overwrite).format("json").options(optMap).save("test.json")
spark.read.json("test.json").show() //compression 压缩格式,支持的压缩格式有:
//none 和 uncompressed表示不压缩
//bzip2、deflate、gzip、lz4、snappy
timestampFormatDf.write.mode(SaveMode.Overwrite).option("compression", "gzip").json("test.json") //multiLine 表示是否支持一条json记录拆分成多行
val primitiveFieldAndType: Dataset[String] = spark.createDataset(spark.sparkContext.parallelize(
"""{"string":"this is a simple string.",
"integer":10,
"long":21474836470,
"bigInteger":92233720368547758070,
"double":1.7976931348623157E308,
"boolean":true,
"null":null
}""" ::
"""{"string":"this is a simple string.",
| "integer":10,
| "long":21474836470,
| "bigInteger":92233720368547758070,
| "double":1.7976931348623157E308,
| "boolean":true,
| "null":null
| }""" :: Nil))(Encoders.STRING)
primitiveFieldAndType.toDF("value").write.mode(SaveMode.Overwrite).option("compression", "GzIp").text(s"${BASE_PATH}/primitiveFieldAndType") val multiLineDF = spark.read.option("multiLine", false).json(s"${BASE_PATH}/primitiveFieldAndType")
multiLineDF.show() spark.stop()
}
}
SparkSQL读写外部数据源-json文件的读写的更多相关文章
- SparkSQL读写外部数据源--csv文件的读写
object CSVFileTest { def main(args: Array[String]): Unit = { val spark = SparkSession .builder() .ap ...
- SparkSQL读写外部数据源-jext文件和table数据源的读写
object ParquetFileTest { def main(args: Array[String]): Unit = { val spark = SparkSession .builder() ...
- SparkSQL读写外部数据源-基本操作load和save
数据源-基本操作load和save object BasicTest { def main(args: Array[String]): Unit = { val spark = SparkSessio ...
- NetCore 对Json文件的读写操作
nuget Microsoft.Extensions.Configuration; Microsoft.Extensions.Configuration.Json; Newtonsoft.Json; ...
- 一文综述python读写csv xml json文件各种骚操作
Python优越的灵活性和易用性使其成为最受欢迎的编程语言之一,尤其是对数据科学家而言.这在很大程度上是因为使用Python处理大型数据集是很简单的一件事情. 如今,每家科技公司都在制定数据战略. ...
- HTML5实现本地JSON文件的读写
参考: 使用HTML5来实现本地文件读取和写入 (FileReader读取json文件,FileSaver.js保存json文件) w3school <input>标签 FileRead ...
- SparkSQL读写外部数据源--数据分区
import com.twq.dataset.Utils._ import org.apache.spark.sql.{SaveMode, SparkSession} object FileParti ...
- SparkSQL读写外部数据源-通过jdbc读写mysql数据库
object JdbcDatasourceTest { def main(args: Array[String]): Unit = { val spark = SparkSession .builde ...
- pyspark 读写csv、json文件
from pyspark import SparkContext,SparkConf import os from pyspark.sql.session import SparkSession de ...
随机推荐
- 【Linux】修改root密码
sudo passwd root 然后提示输入两次新密码就可以了
- 通过TopShelf简单创建windows service
目前很多项目都是B/S架构的,我们经常会用到webapi.MVC等框架,实际项目中可能不仅仅是一些数据的增删改查,需要对数据进行计算,但是将计算逻辑放到api层又会拖累整个项目的运行速度,从而会写一些 ...
- Mybatis 批量插入带oracle序列例子+ORA-02287: 此处不允许序号
在使用mybatis进行批量插入时,发现对于使用Oracle的自动增长序列时提示 : ORA-02287: 此处不允许序号 的错误,下面的这种使用可以解决问题: <!-- 批量插入 --> ...
- c++11多线程记录3: 数据争用和Mutex的使用
https://www.youtube.com/watch?v=3ZxZPeXPaM4 学习视频 数据争用 简单来说就是存在多个线程同时对某个共同的对象进行读写(至少有一个线程在做写操作),造成读取这 ...
- day08——文件操作
day08 文件操作: open() :打开 f (文件句柄)= open("文件的路径(文件放的位置)",mode="操作文件的模式",encoding=&q ...
- linux tomcat开机自启/nginx开机自启
修改/etc/rc.d/rc.local文件,修改完成后需执行以下指令才能正常自启动 chmod +x /etc/rc.d/rc.local #!/bin/bash # THIS FILE IS AD ...
- Spark之RDD依赖关系及DAG逻辑视图
RDD依赖关系为成两种:窄依赖(Narrow Dependency).宽依赖(Shuffle Dependency).窄依赖表示每个父RDD中的Partition最多被子RDD的一个Partition ...
- git 学习笔记 --多人协作
当你从远程仓库克隆时,实际上Git自动把本地的master分支和远程的master分支对应起来了,并且,远程仓库的默认名称是origin. 要查看远程库的信息,用git remote: $ git r ...
- dp的平行四边形优化
证明过程转载自charliezhi2007的博客 题目链接 备用链接 分析:一道区间dp,状态转移方程\(dp[i][j]=min(dp[i][j],dp[i][s]+dp[s+1][j]+sum[j ...
- writeAsBytes writeAsString
import 'dart:io';import 'dart:convert'; main()async{ File a = File('C:\\aria2\\1.txt'); var c = read ...