SparkSQL读写外部数据源-json文件的读写
object JsonFileTest {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder()
.master("local")
.appName("JsonFileTest")
.getOrCreate()
import spark.implicits._
//将parquet文件数据转化成json文件数据
val sessionDf = spark.read.parquet(s"${BASE_PATH}/trackerSession")
sessionDf.show()
sessionDf.write.json(s"${BASE_PATH}/json")
//读取json文件数据
val jsonDF = spark.read.json(s"${BASE_PATH}/json")
jsonDF.show()
//可以从JSON Dataset(类型为String)中创建一个DF
val jsonDataset = spark.createDataset(
"""{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
val otherJsonDF = spark.read.json(jsonDataset)
otherJsonDF.show()
//primitivesAsString(默认为false) 表示将基本类型转化为string类型,这里的基本类型包括:boolean、int、long、float、double
//prefersDecimal(默认是false)表示在primitivesAsString为false的时候,将float,double转成DecimalType
val jsonDataset_1 = spark.createDataset(
"""{"name":"Yin","address":{"is_old":true,"area":23000.34}}""" :: Nil)
var otherJsonDF_1 = spark.read.json(jsonDataset_1)
otherJsonDF_1.printSchema()
/*
root
|-- address: struct (nullable = true)
| |-- area: double (nullable = true)
| |-- is_old: boolean (nullable = true)
|-- name: string (nullable = true)
*/
var optsMap = Map("primitivesAsString" -> "true", "prefersDecimal" -> "true")
otherJsonDF_1 = spark.read.options(optsMap).json(jsonDataset_1)
otherJsonDF_1.printSchema()
/*
root
|-- address: struct (nullable = true)
| |-- area: string (nullable = true)
| |-- is_old: string (nullable = true)
|-- name: string (nullable = true)
*/
optsMap = Map("primitivesAsString" -> "false", "prefersDecimal" -> "true")
otherJsonDF_1 = spark.read.options(optsMap).json(jsonDataset_1)
otherJsonDF_1.printSchema()
/*
root
|-- address: struct (nullable = true)
| |-- area: decimal(7,2) (nullable = true)
| |-- is_old: boolean (nullable = true)
|-- name: string (nullable = true)
*/
//allowComments(默认是false),表示是否支持json中含有java/c格式的注释
spark.read.option("allowComments", "true").json(Seq("""{"name":/* hello */"Yin","address":{"is_old":true,"area":23000.34}}""").toDS()).show()
//allowUnquotedFieldNames(默认是false),表示是否支持json中含有没有引号的域名
spark.read.option("allowUnquotedFieldNames", "true").json(Seq("""{name:"Yin","address":{"is_old":true,"area":23000.34}}""").toDS()).show()
//allowSingleQuotes(默认是true),表示是否支持json中含有单引号的域名或者值
spark.read.option("allowSingleQuotes", "true").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":23000.34}}""").toDS()).show()
//allowNumericLeadingZeros(默认是false),表示是否支持json中含有以0开头的数值
spark.read.option("allowNumericLeadingZeros", "true").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":0023000.34}}""").toDS()).show()
//allowNonNumericNumbers(默认是false),表示是否支持json中含有NaN(not a number)
spark.read.option("allowNonNumericNumbers", "true").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":NaN}}""").toDS()).show()
//allowBackslashEscapingAnyCharacter(默认是false),表示是否支持json中含有反斜杠,且将反斜杠忽略掉
spark.read.option("allowBackslashEscapingAnyCharacter", "true").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":"\$23000"}}""").toDS()).show()
//mode(默认是PERMISSIVE),表是碰到格式解析错误的json的处理行为是:
//PERMISSIVE 表示比较宽容的。如果某条格式错误,则新增一个字段,字段名为columnNameOfCorruptRecord的值,字段的值是错误格式的json字符串,其他的是null
spark.read.option("mode", "PERMISSIVE").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":3000}}""",
"""{'name':'Yin',"address":{"is_old":true,"area":\3000}}""").toDS()).show()
/*
+--------------------+-----------+----+
| _corrupt_record| address|name|
+--------------------+-----------+----+
| null|[3000,true]| Yin|
|{'name':'Yin',"ad...| null|null|
+--------------------+-----------+----+
*/
spark.read.option("mode", "PERMISSIVE").option("columnNameOfCorruptRecord", "customer_column").json(
Seq("""{'name':'Yin',"address":{"is_old":true,"area":3000}}""",
"""{'name':'Yin',"address":{"is_old":true,"area":\3000}}""").toDS()).show()
/*
+-----------+--------------------+----+
| address| customer_column|name|
+-----------+--------------------+----+
|[3000,true]| null| Yin|
| null|{'name':'Yin',"ad...|null|
+-----------+--------------------+----+
*/
//DROPMALFORMED 表示丢掉错误格式的那条记录
spark.read.option("mode", "DROPMALFORMED").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":3000}}""",
"""{'name':'Yin',"address":{"is_old":true,"area":\3000}}""").toDS()).show()
/*
+-----------+----+
| address|name|
+-----------+----+
|[3000,true]| Yin|
+-----------+----+
*/
//FAILFAST 碰到解析错误的记录直接报错
spark.read.option("mode", "FAILFAST").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":3000}}""",
"""{'name':'Yin',"address":{"is_old":true,"area":\3000}}""").toDS()).show()
//dateFormat(默认值为yyyy-MM-dd) 表示json中时间的字符串格式(对应着DataType)
val customSchema = new StructType(Array(StructField("name", StringType, true),
StructField("date", DateType, true)))
val dataFormatDF =
spark.read.schema(customSchema).option("dateFormat", "dd/MM/yyyy HH:mm").json(Seq(
"""{'name':'Yin',"date":"26/08/2015 18:00"}""").toDS())
dataFormatDF.write.mode(SaveMode.Overwrite).option("dateFormat", "yyyy/MM/dd").json("testjson")
spark.read.json("testjson").show()
//timestampFormat(默认值为yyyy-MM-dd'T'HH:mm:ss.SSSZZ) 表示json中时间的字符串格式(对应着TimestampType)
val customSchema_1 = new StructType(Array(StructField("name", StringType, true),
StructField("date", TimestampType, true)))
val timestampFormatDf =
spark.read.schema(customSchema_1).option("timestampFormat", "dd/MM/yyyy HH:mm").json(Seq(
"""{'name':'Yin',"date":"26/08/2015 18:00"}""").toDS())
val optMap = Map("timestampFormat" -> "yyyy/MM/dd HH:mm", DateTimeUtils.TIMEZONE_OPTION -> "GMT")
timestampFormatDf.write.mode(SaveMode.Overwrite).format("json").options(optMap).save("test.json")
spark.read.json("test.json").show()
//compression 压缩格式,支持的压缩格式有:
//none 和 uncompressed表示不压缩
//bzip2、deflate、gzip、lz4、snappy
timestampFormatDf.write.mode(SaveMode.Overwrite).option("compression", "gzip").json("test.json")
//multiLine 表示是否支持一条json记录拆分成多行
val primitiveFieldAndType: Dataset[String] = spark.createDataset(spark.sparkContext.parallelize(
"""{"string":"this is a simple string.",
"integer":10,
"long":21474836470,
"bigInteger":92233720368547758070,
"double":1.7976931348623157E308,
"boolean":true,
"null":null
}""" ::
"""{"string":"this is a simple string.",
| "integer":10,
| "long":21474836470,
| "bigInteger":92233720368547758070,
| "double":1.7976931348623157E308,
| "boolean":true,
| "null":null
| }""" :: Nil))(Encoders.STRING)
primitiveFieldAndType.toDF("value").write.mode(SaveMode.Overwrite).option("compression", "GzIp").text(s"${BASE_PATH}/primitiveFieldAndType")
val multiLineDF = spark.read.option("multiLine", false).json(s"${BASE_PATH}/primitiveFieldAndType")
multiLineDF.show()
spark.stop()
}
}
SparkSQL读写外部数据源-json文件的读写的更多相关文章
- SparkSQL读写外部数据源--csv文件的读写
object CSVFileTest { def main(args: Array[String]): Unit = { val spark = SparkSession .builder() .ap ...
- SparkSQL读写外部数据源-jext文件和table数据源的读写
object ParquetFileTest { def main(args: Array[String]): Unit = { val spark = SparkSession .builder() ...
- SparkSQL读写外部数据源-基本操作load和save
数据源-基本操作load和save object BasicTest { def main(args: Array[String]): Unit = { val spark = SparkSessio ...
- NetCore 对Json文件的读写操作
nuget Microsoft.Extensions.Configuration; Microsoft.Extensions.Configuration.Json; Newtonsoft.Json; ...
- 一文综述python读写csv xml json文件各种骚操作
Python优越的灵活性和易用性使其成为最受欢迎的编程语言之一,尤其是对数据科学家而言.这在很大程度上是因为使用Python处理大型数据集是很简单的一件事情. 如今,每家科技公司都在制定数据战略. ...
- HTML5实现本地JSON文件的读写
参考: 使用HTML5来实现本地文件读取和写入 (FileReader读取json文件,FileSaver.js保存json文件) w3school <input>标签 FileRead ...
- SparkSQL读写外部数据源--数据分区
import com.twq.dataset.Utils._ import org.apache.spark.sql.{SaveMode, SparkSession} object FileParti ...
- SparkSQL读写外部数据源-通过jdbc读写mysql数据库
object JdbcDatasourceTest { def main(args: Array[String]): Unit = { val spark = SparkSession .builde ...
- pyspark 读写csv、json文件
from pyspark import SparkContext,SparkConf import os from pyspark.sql.session import SparkSession de ...
随机推荐
- 页码0~N ,其中0,1....9都出现了几次
/* 这道题目可以暴力解答:对1~n的每个数进行从低位到高位分析 一旦这个数字num出现,a[num]++即可 第二种方法: 由0,1,...9组成的所有n位数,从n个0到n个9共10^n个数,0,1 ...
- mysql8.0安装时,Unable to connect to any of the specified MySQL hosts
https://blog.csdn.net/u014776759/article/details/88422967
- redis常用命令及持久化机制
redis 常用命令 查找redis服务文件 find / -name redis-server 查找配置文件 find / -name redis.conf 启动服务时候,要指定配置文件 启动r ...
- Spring学习指南-第二章-Spring框架基础(完)
第二章 Spring框架基础 面向接口编程的设计方法 在上一章中,我们看到了一个依赖于其他类的POJO类包含了对其依赖项的具体类的引用.例如,FixedDepositController 类包含 ...
- ElasticSearch 调优
来源:http://tinyurl.com/y4gnzbje 第一部分:调优索引速度 第二部分-调优搜索速度 英文原文:https://www.elastic.co/guide/en/elastics ...
- 华为交换机配置Telnet步骤
通过Telnet方式登录交换机进行设备查询管理为各网络管理员提供了便利,不需要成天拎着console线夹着笔记本蹲在机房里,只要在能连接到相应网络的电脑上Telnet连接即可. 前提条件是该交换机已经 ...
- 3.使用 Code First 迁移更新数据库
1.更新 SeedData 类,使它提供新列的值. 示例更改如下所示,但可能需要对每个 new Movie 块做出此更改. context.Movie.AddRange( new Movie { Ti ...
- dump net core lldb 安装
原文https://www.cnblogs.com/calvinK/p/9263696.html centos7下安装lldb,dotnet netcore 进程生成转储文件,并使用lldb进行分析 ...
- 记录screen屏幕日志
1.建立日志存放目录#mkdir /var/log/screen/ 2.修改配置文件,在末尾添加配置内容#vi /etc/screenrclogfile /var/log/screen/%t.log ...
- aria2 cmd set chmod, and others..
import 'package:flutter/material.dart'; import 'dart:io'; import 'dart:async'; import 'package:rxdar ...