SparkSQL读写外部数据源-json文件的读写
object JsonFileTest {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder()
.master("local")
.appName("JsonFileTest")
.getOrCreate() import spark.implicits._ //将parquet文件数据转化成json文件数据
val sessionDf = spark.read.parquet(s"${BASE_PATH}/trackerSession")
sessionDf.show() sessionDf.write.json(s"${BASE_PATH}/json") //读取json文件数据
val jsonDF = spark.read.json(s"${BASE_PATH}/json")
jsonDF.show() //可以从JSON Dataset(类型为String)中创建一个DF
val jsonDataset = spark.createDataset(
"""{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
val otherJsonDF = spark.read.json(jsonDataset)
otherJsonDF.show() //primitivesAsString(默认为false) 表示将基本类型转化为string类型,这里的基本类型包括:boolean、int、long、float、double
//prefersDecimal(默认是false)表示在primitivesAsString为false的时候,将float,double转成DecimalType
val jsonDataset_1 = spark.createDataset(
"""{"name":"Yin","address":{"is_old":true,"area":23000.34}}""" :: Nil)
var otherJsonDF_1 = spark.read.json(jsonDataset_1)
otherJsonDF_1.printSchema()
/*
root
|-- address: struct (nullable = true)
| |-- area: double (nullable = true)
| |-- is_old: boolean (nullable = true)
|-- name: string (nullable = true)
*/ var optsMap = Map("primitivesAsString" -> "true", "prefersDecimal" -> "true")
otherJsonDF_1 = spark.read.options(optsMap).json(jsonDataset_1)
otherJsonDF_1.printSchema()
/*
root
|-- address: struct (nullable = true)
| |-- area: string (nullable = true)
| |-- is_old: string (nullable = true)
|-- name: string (nullable = true)
*/ optsMap = Map("primitivesAsString" -> "false", "prefersDecimal" -> "true")
otherJsonDF_1 = spark.read.options(optsMap).json(jsonDataset_1)
otherJsonDF_1.printSchema()
/*
root
|-- address: struct (nullable = true)
| |-- area: decimal(7,2) (nullable = true)
| |-- is_old: boolean (nullable = true)
|-- name: string (nullable = true)
*/ //allowComments(默认是false),表示是否支持json中含有java/c格式的注释
spark.read.option("allowComments", "true").json(Seq("""{"name":/* hello */"Yin","address":{"is_old":true,"area":23000.34}}""").toDS()).show() //allowUnquotedFieldNames(默认是false),表示是否支持json中含有没有引号的域名
spark.read.option("allowUnquotedFieldNames", "true").json(Seq("""{name:"Yin","address":{"is_old":true,"area":23000.34}}""").toDS()).show() //allowSingleQuotes(默认是true),表示是否支持json中含有单引号的域名或者值
spark.read.option("allowSingleQuotes", "true").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":23000.34}}""").toDS()).show() //allowNumericLeadingZeros(默认是false),表示是否支持json中含有以0开头的数值
spark.read.option("allowNumericLeadingZeros", "true").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":0023000.34}}""").toDS()).show() //allowNonNumericNumbers(默认是false),表示是否支持json中含有NaN(not a number)
spark.read.option("allowNonNumericNumbers", "true").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":NaN}}""").toDS()).show() //allowBackslashEscapingAnyCharacter(默认是false),表示是否支持json中含有反斜杠,且将反斜杠忽略掉
spark.read.option("allowBackslashEscapingAnyCharacter", "true").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":"\$23000"}}""").toDS()).show() //mode(默认是PERMISSIVE),表是碰到格式解析错误的json的处理行为是:
//PERMISSIVE 表示比较宽容的。如果某条格式错误,则新增一个字段,字段名为columnNameOfCorruptRecord的值,字段的值是错误格式的json字符串,其他的是null
spark.read.option("mode", "PERMISSIVE").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":3000}}""",
"""{'name':'Yin',"address":{"is_old":true,"area":\3000}}""").toDS()).show()
/*
+--------------------+-----------+----+
| _corrupt_record| address|name|
+--------------------+-----------+----+
| null|[3000,true]| Yin|
|{'name':'Yin',"ad...| null|null|
+--------------------+-----------+----+
*/
spark.read.option("mode", "PERMISSIVE").option("columnNameOfCorruptRecord", "customer_column").json(
Seq("""{'name':'Yin',"address":{"is_old":true,"area":3000}}""",
"""{'name':'Yin',"address":{"is_old":true,"area":\3000}}""").toDS()).show()
/*
+-----------+--------------------+----+
| address| customer_column|name|
+-----------+--------------------+----+
|[3000,true]| null| Yin|
| null|{'name':'Yin',"ad...|null|
+-----------+--------------------+----+
*/
//DROPMALFORMED 表示丢掉错误格式的那条记录
spark.read.option("mode", "DROPMALFORMED").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":3000}}""",
"""{'name':'Yin',"address":{"is_old":true,"area":\3000}}""").toDS()).show()
/*
+-----------+----+
| address|name|
+-----------+----+
|[3000,true]| Yin|
+-----------+----+
*/
//FAILFAST 碰到解析错误的记录直接报错
spark.read.option("mode", "FAILFAST").json(Seq("""{'name':'Yin',"address":{"is_old":true,"area":3000}}""",
"""{'name':'Yin',"address":{"is_old":true,"area":\3000}}""").toDS()).show() //dateFormat(默认值为yyyy-MM-dd) 表示json中时间的字符串格式(对应着DataType)
val customSchema = new StructType(Array(StructField("name", StringType, true),
StructField("date", DateType, true)))
val dataFormatDF =
spark.read.schema(customSchema).option("dateFormat", "dd/MM/yyyy HH:mm").json(Seq(
"""{'name':'Yin',"date":"26/08/2015 18:00"}""").toDS())
dataFormatDF.write.mode(SaveMode.Overwrite).option("dateFormat", "yyyy/MM/dd").json("testjson")
spark.read.json("testjson").show() //timestampFormat(默认值为yyyy-MM-dd'T'HH:mm:ss.SSSZZ) 表示json中时间的字符串格式(对应着TimestampType)
val customSchema_1 = new StructType(Array(StructField("name", StringType, true),
StructField("date", TimestampType, true)))
val timestampFormatDf =
spark.read.schema(customSchema_1).option("timestampFormat", "dd/MM/yyyy HH:mm").json(Seq(
"""{'name':'Yin',"date":"26/08/2015 18:00"}""").toDS()) val optMap = Map("timestampFormat" -> "yyyy/MM/dd HH:mm", DateTimeUtils.TIMEZONE_OPTION -> "GMT")
timestampFormatDf.write.mode(SaveMode.Overwrite).format("json").options(optMap).save("test.json")
spark.read.json("test.json").show() //compression 压缩格式,支持的压缩格式有:
//none 和 uncompressed表示不压缩
//bzip2、deflate、gzip、lz4、snappy
timestampFormatDf.write.mode(SaveMode.Overwrite).option("compression", "gzip").json("test.json") //multiLine 表示是否支持一条json记录拆分成多行
val primitiveFieldAndType: Dataset[String] = spark.createDataset(spark.sparkContext.parallelize(
"""{"string":"this is a simple string.",
"integer":10,
"long":21474836470,
"bigInteger":92233720368547758070,
"double":1.7976931348623157E308,
"boolean":true,
"null":null
}""" ::
"""{"string":"this is a simple string.",
| "integer":10,
| "long":21474836470,
| "bigInteger":92233720368547758070,
| "double":1.7976931348623157E308,
| "boolean":true,
| "null":null
| }""" :: Nil))(Encoders.STRING)
primitiveFieldAndType.toDF("value").write.mode(SaveMode.Overwrite).option("compression", "GzIp").text(s"${BASE_PATH}/primitiveFieldAndType") val multiLineDF = spark.read.option("multiLine", false).json(s"${BASE_PATH}/primitiveFieldAndType")
multiLineDF.show() spark.stop()
}
}
SparkSQL读写外部数据源-json文件的读写的更多相关文章
- SparkSQL读写外部数据源--csv文件的读写
object CSVFileTest { def main(args: Array[String]): Unit = { val spark = SparkSession .builder() .ap ...
- SparkSQL读写外部数据源-jext文件和table数据源的读写
object ParquetFileTest { def main(args: Array[String]): Unit = { val spark = SparkSession .builder() ...
- SparkSQL读写外部数据源-基本操作load和save
数据源-基本操作load和save object BasicTest { def main(args: Array[String]): Unit = { val spark = SparkSessio ...
- NetCore 对Json文件的读写操作
nuget Microsoft.Extensions.Configuration; Microsoft.Extensions.Configuration.Json; Newtonsoft.Json; ...
- 一文综述python读写csv xml json文件各种骚操作
Python优越的灵活性和易用性使其成为最受欢迎的编程语言之一,尤其是对数据科学家而言.这在很大程度上是因为使用Python处理大型数据集是很简单的一件事情. 如今,每家科技公司都在制定数据战略. ...
- HTML5实现本地JSON文件的读写
参考: 使用HTML5来实现本地文件读取和写入 (FileReader读取json文件,FileSaver.js保存json文件) w3school <input>标签 FileRead ...
- SparkSQL读写外部数据源--数据分区
import com.twq.dataset.Utils._ import org.apache.spark.sql.{SaveMode, SparkSession} object FileParti ...
- SparkSQL读写外部数据源-通过jdbc读写mysql数据库
object JdbcDatasourceTest { def main(args: Array[String]): Unit = { val spark = SparkSession .builde ...
- pyspark 读写csv、json文件
from pyspark import SparkContext,SparkConf import os from pyspark.sql.session import SparkSession de ...
随机推荐
- Linux文件的基本操作函数
1.Linux文件的基本操作 Linux文件的基本操作主要包括了文件的创建.打开.读写和关闭等基本操作. 1.1.文件操作系统调用 (1)创建文件系统函数 int creat(const char * ...
- thinkphp5 模板url标签 跟javascript ajax 的 url 参数 被莫名替换
发现一个 thinkphp5 的小bug 我用的是 thinkphp5.0.24 版本 在模板标签里 原来的大U函数 被改成url 那么问题来了 在javascript里 这样写 标签很容 ...
- string字符串成员函数
string字符串成员函数 string str1="aaa"; char c='c'; str1.assign("ABCAAAAAAABBBBB");//替换 ...
- jenkins+springboot+maven多模块部署
一.jenkins的安装配置 1.去官网下载war包,这种方式比较简单方便 java -jar jenkins.war --httpPort=49001 2.首次运行有一个key放在服务器上需要你填入 ...
- python 打包前三天日志
日志格式 app-2019-07-24.log app-2019-07-24.1.log 该脚本适合一天之内有多个日志文件 # /usr/bin/python #-*- coding: utf-8 - ...
- 【题解】Luogu P1357 花园
原题传送门 我们先将花圃断环为链,并将\([1,m]\)复制一份到\([n+1,n+m]\),最后要求\([1,n+m]\)是合法序列且\([1,m]\)与\([n+1,n+m]\)相等的序列的数量即 ...
- MySql5.7 json查询
create table t1(name json); insert into t1 values(’ { “hello”: “song”, “num”: 111, “obj”: { “who”: “ ...
- C# 读取Oracle数据库视图数据异常问题处理
会出现类似现在这种提示的错误 System.Data.OracleClient 需要 Oracle 客户端软件 version 8.1.7 或更高版本 情况1.开发过程中遇到这种问题解决 由于.net ...
- 对JS事件机制的深入理解
一.发生一个事件时,事件及事件处理程序会被放入浏览器的事件队列,事件可归为以下几类: 浏览器事件:window.load.document.DomContentLoaded等 网络请求事件:ajax. ...
- EFCore 中执行存储过程返回DataSet DataTable
在项目中由于需求,需要返回复杂的数据,需要执行存储过程,但是在DONETCORE2.0中,看官网文档执行的sql的有点操蛋,满足不了需求,就想到了ADO.NET 于是找资料,也没有合适的,就动手自己封 ...