python实现抽样分布描述
本次使用木东居士提供数据案例,验证数据分布等内容,
参考链接:https://www.jianshu.com/p/6522cd0f4278
#数据读取
df = pd.read_excel('C://Users//zxy//Desktop//data.xlsx',usecols = [1,2,3]) 1.按照港口分类,计算各类港口数据 年龄、车票价格的统计量。
df1 = df.groupby(['Embarked'])
df1.describe() 或
# 变异系数 = 标准差/平均值
def cv(data):
return data.std()/data.var()
df2 = df.groupby(['Embarked']).agg(['count','min','max','median','mean','var','std',cv])
df2 = df2.apply(lambda x:round(x,2))
df2_age = df2['Age']
df2_fare = df2['Fare'] # 2、画出价格的分布图像,验证数据服从何种分布
# 2.1 船票直方图:
plt.hist(df['Fare'],20,normed=1,alpha=0.75)
plt.title('Fare')
plt.grid(True) #分别用kstest、shapiro、normaltest来验证分布系数
ks_test = stats.kstest(df['Fare'], 'norm')
shapiro_test = stats.shapiro(df['Fare'])
normaltest_test = stats.normaltest(df['Fare'],axis=0)
#以上三种检测结果表明 p<5%,因此 船票数据不符合正态分布。 # 绘制拟合正态分布曲线:
fare = df['Fare'] plt.figure()
fare.plot(kind = 'kde') #原始数据的正态分布 M_S = stats.norm.fit(fare) #正态分布拟合的平均值loc,标准差 scale
normalDistribution = stats.norm(M_S[0], M_S[1]) # 绘制拟合的正态分布图
x = np.linspace(normalDistribution.ppf(0.01), normalDistribution.ppf(0.99), 100)
plt.plot(x, normalDistribution.pdf(x), c='orange')
plt.xlabel('Fare about Titanic')
plt.title('Titanic[Fare] on NormalDistribution', size=20)
plt.legend(['Origin', 'NormDistribution']) # 验证是否符合T分布
T_S = stats.t.fit(fare)
df = T_S[0]
loc = T_S[1]
scale = T_S[2]
x2 = stats.t.rvs(df=df, loc=loc, scale=scale, size=len(fare))
D, p = stats.ks_2samp(fare, x2)
#p < alpha,拒绝原假设,价格数据不符合t分布。 # 对票价数据进行T分布拟合:
plt.figure()
fare.plot(kind = 'kde')
TDistribution = stats.t(T_S[0], T_S[1],T_S[2]) # 绘制拟合的T分布图
x = np.linspace(TDistribution.ppf(0.01), TDistribution.ppf(0.99), 100)
plt.plot(x, TDistribution.pdf(x), c='orange')
plt.xlabel('Fare about Titanic')
plt.title('Titanic[Fare] on TDistribution', size=20)
plt.legend(['Origin', 'TDistribution']) # 验证是否符合卡方分布?
chi_S = stats.chi2.fit(fare)
df_chi = chi_S[0]
loc_chi = chi_S[1]
scale_chi = chi_S[2]
x2 = stats.chi2.rvs(df=df_chi, loc=loc_chi, scale=scale_chi, size=len(fare))
Dk, pk = stats.ks_2samp(fare, x2)#不符合 #对票价数据进行卡方分布拟合
plt.figure()
fare.plot(kind = 'kde')
chiDistribution = stats.chi2(chi_S[0], chi_S[1],chi_S[2]) # 绘制拟合的正态分布图
x = np.linspace(chiDistribution.ppf(0.01), chiDistribution.ppf(0.99), 100)
plt.plot(x, chiDistribution.pdf(x), c='orange')
plt.xlabel('Fare about Titanic')
plt.title('Titanic[Fare] on chi-square_Distribution', size=20)
plt.legend(['Origin', 'chi-square_Distribution']) # 按照港口分类,验证S与Q两个港口间的价格之差是否服从某种分布
S_fare = df[df['Embarked'] == 'S']['Fare']
Q_fare = df[df['Embarked'] =='Q']['Fare']
C_fare = df[df['Embarked'] =='C']['Fare']
S_fare.describe() # 按照港口分类后,S港口样本数<=554,Q港口样本数<=28,C港口样本数<=130。
# 总体不服从正态分布,所以需要当n比较大时,一般要求n>=30,两个样本均值之差的抽样分布可近似为正态分布。
# X2的总体容量为28,其样本容量不可能超过30,故其S港和Q港两个样本均值之差(E(X1)-E(X2))的抽样分布不服从正态分布。
# S港和C港两个样本均值之差(E(X1)-E(X3))的抽样分布近似服从正态分布,
# 其均值和方差分别为E(E(X1) - E(X3)) = E(E(X1)) - E(E(X3)) = μ1 - μ3;D(E(X1) + E(X3)) = D(E(X1)) + D(E(X3)) = σ1²/n1 + σ3²/n3 。 miu = np.mean(S_fare) - np.mean(C_fare)
sig = np.sqrt(np.var(S_fare, ddof=1)/len(S_fare) + np.var(C_fare, ddof=1)/len(C_fare)) x = np.arange(- 110, 50)
y = stats.norm.pdf(x, miu, sig)
plt.plot(x, y)
plt.xlabel("S_Fare - C_Fare")
plt.ylabel("Density")
plt.title('Fare difference between S and C')
plt.show()
python实现抽样分布描述的更多相关文章
- Python中的描述器
21.描述器:Descriptors 1)描述器的表现 用到三个魔术方法.__get__() __set__() __delete__() 方法签名如下: object.__get__(self ...
- python2.7高级编程 笔记二(Python中的描述符)
Python中包含了许多内建的语言特性,它们使得代码简洁且易于理解.这些特性包括列表/集合/字典推导式,属性(property).以及装饰器(decorator).对于大部分特性来说,这些" ...
- Python核心编程-描述符
python中,什么描述符.描述符就是实现了"__get__"."__set__"或"__delete__" 方法中至少一个的对象.什么是非 ...
- Python 面向对象(五) 描述器
使用到了__get__,__set__,__delete__中的任何一种方法的类就是描述器 描述器的定义 一个类实现了__get__,__set__,__delete__中任意一个,这个类就是描述器. ...
- Python系列之 - 描述符
描述符是什么:描述符本质就是一个新式类,在这个新式类中,至少实现了__get__(),__set__(),__delete__()中的一个,这也被称为描述符协议 __get__():调用一个属性时,触 ...
- python类:描述器Descriptors和元类MetaClasses
http://blog.csdn.net/pipisorry/article/details/50444769 描述器(Descriptors) 描述器决定了对象属性是如何被访问的.描述器的作用是定制 ...
- python 将文件描述符包装成文件对象
有一个对应于操作系统上一个已打开的I/O 通道(比如文件.管道.套接字等)的整型文件描述符,你想将它包装成一个更高层的Python 文件对象. 一个文件描述符和一个打开的普通文件是不一样的.文件描述符 ...
- 详解python中的描述符
描述符介绍 总所周知,python声明变量的时候,不需要指定类型.虽然现在有了注解,但这只是一个规范,在语法层面是无效的.比如: 这里我们定义了一个hello函数,我们要求name参数传入str类型的 ...
- 聊聊Python中的描述符
描述符是实现描述符协议方法的Python对象,当将其作为其他对象的属性进行访问时,该描述符使您能够创建具有特殊行为的对象. 通常,描述符是具有“绑定行为”的对象属性,其属性访问已被描述符协议中的方法所 ...
随机推荐
- 在ensp上利用单臂路由实验VLAN间路由
我们为什么要设置单臂路由? 因为我们要解决不同vlan,不同网络的PC机间的通信问题~ 那它为啥叫单臂路由嘞? 单臂路由的原理时通过一台路由器,使vlan间互通数据通过路由器进行三层转发,如果在路由器 ...
- 设置Kafka集群的方法
1.目标 今天,在这篇Kafka文章中,我们将看到Kafka Cluster Setup.这个Kafka集群教程为我们提供了一些设置Kafka集群的简单步骤.简而言之,为了实现Kafka服务的高可用性 ...
- spring框架学习(四)——注解方式AOP
注解配置业务类 使用@Component("s") 注解ProductService 类 package com.how2java.service; import org.spri ...
- Appium移动端自动化测试--录制测试用例并运行
目录 文章目录如下 录制用例并执行 1.使用Appium desktop录制用例 2.安装Pythony依赖Appium-Python-Client 3.增加隐式等待增强稳定性 4.重新运行 文章目录 ...
- 45 容器(四)——手写LinkedList
概念 LinkedList级双向链表,它的单位是节点,每一个节点都要一个头指针和一个尾指针,称为前驱和后继.第一个节点的头指针指向最后一个节点,最后一个节点的尾指针指向第一个节点,形成环路. 链表增删 ...
- 【C#】上机实验八
1. 设计一个窗体应用程序,模拟写字板应用程序的基本功能.具体功能要求如下: (1)“文件”菜单中有“新建”.“打开”.“保存”.“退出”子菜单. (2)“编辑”菜单中有“剪切”.“复制”.“粘贴”. ...
- java 简易日历表
在页面上输出1900年以后任意一年的简易日历表 package text3; import java.util.Scanner; public class MyCalendar { public st ...
- SSH协议介绍
SSH概念介绍 SSH是一种网络协议,我们常说的 ssh 一般指其实现,即 OpenSSH,在 shell 中,也就是 ssh 命令. Secure Shell(安全外壳协议,简称SSH)是一种加密的 ...
- Python Django 协程报错,进程池、线程池与异步调用、回调机制
一.问题描述 在Django视图函数中,导入 gevent 模块 import gevent from gevent import monkey; monkey.patch_all() from ge ...
- "超时时间已到。在操作完成之前超时"的解决思路
错误往往是数据库操作超时引起 1.检查数据库访问连接字符串启用连接池,若是,适当增大超时时间 2.ADO sqlcommand相应调整超时时长 3.关键在于优化数据库操作,优化压缩执行时间