caioj 1068是最长公共子序列裸体,秒过, 就不写博客了

caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽

   (1) 字符串下标从1开始,因为0用来表示字符为空的情况,而不是第一个字符 

   (2)初始化问题。
         一般设f[i][j]为第一个字符前i个,第二个字符前j个的最优价值

         f[0][0] = 0

          然后要初始化f[i][0], f[0][i]


      这个时候要根据题意。

         这个时候就是一个字符有,一个字符空的情况

   (3)然后就可以两层for了
          这个时候记住根据题目有不同的决策,取最优

          一般有匹配字符和不匹配字符(如加空格)两种情况


          按照题目而定  

          最后要注意如果是取min初值要最大,max初值最小

          或者直接用其中一个决策作为初值

这道题要右对齐,所以直接逆序存

    

然后套模型

初始化的话,显然空的时候全部都是空格

所以都初始化为-1

决策的话

如果是匹配字符的话,一样就加2,否则不加

如果是空格的话,就两边枚举空格长度取最优

具体看代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 60;
char a[MAXN], b[MAXN], s[MAXN];
int f[MAXN][MAXN]; void up(int &x, int a) { x = max(x, a); } int main()
{
scanf("%s", s + 1);
int lena = strlen(s + 1);
REP(i, 1, lena + 1) a[i] = s[lena-i+1]; scanf("%s", s + 1);
int lenb = strlen(s + 1);
REP(i, 1, lenb + 1) b[i] = s[lenb-i+1]; REP(i, 1, lena + 1) f[i][0] = -1;
REP(i, 1, lenb + 1) f[0][i] = -1;
f[0][0] = 0; int ans = -1e9;
REP(i, 1, lena + 1)
REP(j, 1, lenb + 1)
{
f[i][j] = -1e9;
if(a[i] == b[j]) up(f[i][j], f[i-1][j-1] + 2); //选择匹配字符
else up(f[i][j], f[i-1][j-1]); for(int k = i - 1; k >= 0; k--) up(f[i][j], f[k][j] - 1); //选择空格
for(int k = j - 1; k >= 0; k--) up(f[i][j], f[i][k] - 1); up(ans, f[i][j]);
}
printf("%d\n", ans); return 0;
}

caioj 1069 动态规划入门(二维一边推2:顺序对齐)(最长公共子序列拓展总结)的更多相关文章

  1. caioj 1071 动态规划入门(二维一边推4:相似基因) (最长公共子序列拓展)

    复制上一题总结 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽    (1) 字符串下标从1开始,因为0用来表示字符为空的情况,而不是第一个字符     (2) ...

  2. caioj 1070 动态规划入门(二维一边推3:字符距离)(最长公共子序列拓展)

    复制上一题总结 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽    (1) 字符串下标从1开始,因为0用来表示字符为空的情况,而不是第一个字符     (2) ...

  3. caioj 1073 动态规划入门(三维一边推:最长公共子序列加强版(三串LCS))

    三维的与二维大同小异,看代码. #include<cstdio> #include<cstring> #include<algorithm> #define REP ...

  4. caioj 1063 动态规划入门(一维一边推1:美元和马克)

    这道题一开始我是这么想的 最后的答案肯定是某次的马克换回来的,但这个该怎么确定?? 实际上应该把范围缩小,只看最后一次和倒数第二次之间有什么联系. 可以发现,只有两种可能,最后一天换或者不换.换的话就 ...

  5. caioj 1067动态规划入门(一维一边推5: 乘积最大(高精度版))

    因为这里涉及到乘号的个数,那么我们可以用f[i][j]表示前i个位乘号为j个时的最大乘积 那么相比上一题就是多了一层枚举多少个乘号的循环,可以得出 f[i][r] = max(f[j - 1][r - ...

  6. caioj 1066 动态规划入门(一维一边推4:护卫队)(分组型dp总结)

    很容易想到f[i]为前i项的最优价值,但是我一直在纠结如果重量满了该怎么办. 正解有点枚举的味道. 就是枚举当前这辆车与这辆车以前的组合一组,在能组的里面取最优的. 然后要记得初始化,因为有min,所 ...

  7. caioj 1065 动态规划入门(一维一边推3:合唱队形)

    就是最长上升子序列,但是要用n^2的算法. #include<cstdio> #include<algorithm> #define REP(i, a, b) for(int ...

  8. C++动态规划实现查找最长公共子序列

    问题描述: 给定两个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列.(给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共 ...

  9. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

随机推荐

  1. CentOS 安装 MySQL8

    @Linux 官网:https://dev.mysql.com/doc/refman/8.0/en/binary-installation.html 个人博客:https://www.xingchen ...

  2. hiho1080 - 数据结构 线段树(入门题,两个lazy tag)

    题目链接 维护区间和,两个操作:一个是将某个区间设置成一个值,一个是将某个区间增加一个固定值 /**************************************************** ...

  3. HDU 1312 Red and Black【DFS】

    搜索虐我千万遍@_@-----一道搜索的水题,WA了好多好多次@_@发现是n,m搞反了-_- 题意-- 给出m行 n列的矩形,其中从@出发,不能跳到#,只能跳到'.'问最多能够跳到多少块'.' 直接搜 ...

  4. 数据库用varchar存储时间时会出现时间差解决办法

    用varchar存储时间,最后提取数据库时间字段会出现时间差问题. 当我们调用数据库时间字段时,会出现时间差,使得查询的数据查询不到,解决办法如下 CAST( 字段名as DATE) between ...

  5. express + jqPaginator 分页展示内容

    写在前面的话 分页展示内容也是我们在页面开发中经常会遇到的需求 前端页面利用jqPaginator这个jquery插件来编写 后端利用mysql存储数据 开始敲代码 回顾sql知识 首先让我们回顾一下 ...

  6. vue 事件上加阻止冒泡 阻止默认事件

    重点 vue事件修饰符 <!-- 阻止单击事件冒泡 --> <a v-on:click.stop="doThis"></a> <!-- 提 ...

  7. linux常用命令技巧

    原文地址 这篇文章来源于Quroa的一个问答<What are some time-saving tips that every Linux user should know?>—— Li ...

  8. [luogu] P4514 上帝造题的七分钟 (树状数组,二维差分)

    P4514 上帝造题的七分钟 题目背景 裸体就意味着身体. 题目描述 "第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为(a ...

  9. C++容器(四):map类型

    map 类型 map是键-值对的集合.map类型通常可以理解为关联数组:可以使用键作为下标来获取一个值,正如内置数组类型一样.而关联的本质在于元素的值与某个特定的键相关联,而非通过元素在数组内的位置来 ...

  10. python __future__ 的几种特性

    今天看tensorflow的代码,看到python里面有这么几句: from __future__ import absolute_import from __future__ import divi ...