【剑指Offer】10、矩形覆盖
题目描述:
我们可以用2 X 1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2 X 1的小矩形无重叠地覆盖一个2 X n的大矩形,总共有多少种方法?
解题思路:
我们可以以2 X 8的矩形为例。
先把2X8的覆盖方法记为f(8),用1X2的小矩形去覆盖时,有两种选择:横着放或者竖着放。当竖着放时,右边还剩下2X7的区域。很明显这种情况下覆盖方法为f(7)。当横着放时,1X2的矩形放在左上角,其下方区域只能也横着放一个矩形,此时右边区域值剩下2X6的区域,这种情况下覆盖方法为f(6)。所以可以得到:f(8)=f(7)+f(6),不难看出这仍然是斐波那契数列。
特殊情况:f(1)=1,f(2)=2
编程实现(Java):
public int RectCover(int target) {
//n=1(1),n=2(2),横(n-1),竖(n-2)
if(target<=2)
return target;
int first=1,second=2,res=0;
for(int i=3;i<=target;i++){
res=first+second;
first=second;
second=res;
}
return res;
}
【剑指Offer】10、矩形覆盖的更多相关文章
- 剑指Offer 10. 矩形覆盖 (递归)
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目地址 https://www.nowcoder.com/ ...
- 剑指offer 10矩形覆盖
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法 java版本: public class Solution { publ ...
- [剑指Offer] 10.矩形覆盖
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? [思路]可归纳得出结论: f(n) = f(n-1) + f ...
- 剑指Offer:矩形覆盖【N1】
剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的 ...
- 剑指OFFER之矩形覆盖(九度OJ1390)
题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入 ...
- 【剑指offer】矩形覆盖
一.题目: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.思路: 斐波那契数列 三.代码:
- 剑指offer:矩形覆盖
题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解题思路: 和跳台阶那道题差不多.分别以矩形的两条边长做拓 ...
- 《剑指offer》矩形覆盖
一.题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.输入描述 输入n 三.输出描述 输出有多少种不同的覆 ...
- 【牛客网-剑指offer】矩形覆盖
题目: 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析: 假设2为高,n为宽 因为高为2固定,会出现固定情况,即无论 ...
- 剑指Offer之矩形覆盖
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 比如n=3时,2*3的矩形块有3种覆盖方法: 思路:与裴波拉 ...
随机推荐
- zookeeper协调技术
本文转自http://www.cnblogs.com/wuxl360/p/5817471.html 感谢作者 一.分布式协调技术 在给大家介绍ZooKeeper之前先来给大家介绍一种技术——分布式协调 ...
- android 通用菜单条实现(一)
一.前言介绍 直奔主题啦,非常多Android app都有菜单条.菜单条除了背景图片.图标的不同外,布局基本一致.大致能够分为三部分:菜单条的左側区域.菜单条中间区域.菜单条右側区域. 为了考虑代码的 ...
- 阻尼滑动--能够滑动过度的ScrollView(OverScrollView)
贴上一个我自己用过的阻尼滑动的ScrollView,像QQ里面那种滑动效果,尽管不是我写的,可是我认为还能够,贴出来做个记录,实用到的时候免得到处去找. 代码例如以下: /* * Copyright ...
- Android eclipse导入项目后出现Unable to resolve target 'android-17'解决方法
eclipse导入项目后出现Unable to resolve target 'android-17'解决方法.在最后附带还有一种编译逻辑不成功情况解决方法. 一.问题情况 二.解决的方法 1.改动项 ...
- 01背包模板、全然背包 and 多重背包(模板)
转载请注明出处:http://blog.csdn.net/u012860063 贴一个自觉得解说不错的链接:http://www.cppblog.com/tanky-woo/archive/2010/ ...
- Codeforces Round #277 (Div. 2)A. Calculating Function 水
A. Calculating Function For a positive integer n let's define a function f: f(n) = - 1 + 2 - 3 + ...
- 检测含有挖矿脚本的WiFi热点——果然是天下没有免费的午餐
见:http://www.freebuf.com/articles/web/161010.html 本质上是在开放wifi热点,自己搭建挖掘的网页,让接入的人访问该网页. 802.11无线协议本身特点 ...
- elasticsearch 分页查询实现方案——Top K+归并排序
elasticsearch 分页查询实现方案 1. from+size 实现分页 from表示从第几行开始,size表示查询多少条文档.from默认为0,size默认为10,注意:size的大小不能超 ...
- 【转】iOS开发-关闭/收起键盘方法总结
原文网址:http://www.cnblogs.com/GarveyCalvin/p/4167759.html 前言:作为IOS开发人员,需要经常和表单打交道.因此我对收起键盘的方法作了下总结,IOS ...
- 逻辑回归 C++
#include <iostream>#include <string>#include <fstream>#include <sstream>#inc ...