使用Cubic Spline通过一组2D点绘制平滑曲线
原文Draw a smooth curve through a set of 2D points with Cubic Spline
I would like to provide you with the code to draw a smooth curve through a set of 2D points with cubic spline. If we have some tabulated function yi=f(xi) it's easy to get its cubic spline interpolant with some library code. For example, you could use the code from "Numerical Recipes in C, 2-nd Edition" book - proved source of a lot of math algorithms. Cubic spline gives an excellent interpolation in the most cases.
Cubic spline is comprised from a sequence of cubic polynomials, so to draw the curve we have to approximate each partial cubic polynomial with the polyline.
Let we have a cubic polynomial defined at [x1, x2] interval.
To approximate it with polyline we should do the following:
- Get the deviation polynomial, i.e. the difference between the initial cubic polynomial and the straight line passing through its left and right bound points. This polynomial is either identically equal to zero or has one or two extremum(s) at [x1, x2].
- Evaluate the values of deviation polynomial at extremum points. It its absolute values are lower than the tolerance then the initial cubic polynomial can be approximated with a straight line passing through points (x1, y1) and (x2, y2). Otherwise
- Split the initial interval [x1, x2] on two or three subintervals (depending on extremum count) and repeat the procedure recursively from (1) for each of subintervals.
///
/// Approximating Cubic Polynomial with PolyLine.
///
public static class CubicPolynomialPolylineApproximation
{
///
/// Gets the approximation of the polynomial with polyline.
///
/// The polynomial.
/// The abscissas start.
/// The abscissas stop.
/// The tolerance is the maximum distance from the cubic
/// polynomial to the approximating polyline.
///
public static Collection Approximate(Polynomial polynomial, double x1, double x2, double tolerance)
{
Debug.Assert(x1 <= x2, "x1 <= x2");
Debug.Assert(polynomial.Order == 3, "polynomial.Order == 3");
Collection points = new Collection();
// Get difference between given polynomial and the straight line passing its node points.
Polynomial deviation = DeviationPolynomial(polynomial, x1, x2);
Debug.Assert(deviation.Order == 3, "diff.Order == 3");
if (deviation[0] == 0 && deviation[1] == 0 && deviation[2] == 0 && deviation[3] == 0)
{
points.Add(new Point(x1, polynomial.GetValue(x1)));
points.Add(new Point(x2, polynomial.GetValue(x2)));
return points;
}
// Get previouse polynomial first derivative
Polynomial firstDerivative = new Polynomial(new double[] { deviation[1], 2 * deviation[2], 3 * deviation[3] });
// Difference polinomial extremums.
// Fing first derivative roots.
Complex[] complexRoots = firstDerivative.Solve();
// Get real roots in [x1, x2].
List roots = new List();
foreach (Complex complexRoot in complexRoots)
{
if (complexRoot.Imaginary == 0)
{
double r = complexRoot.Real;
if (r > x1 && r < x2)
roots.Add(r);
}
}
Debug.Assert(roots.Count > 0, "roots.Count > 0");
Debug.Assert(roots.Count <= 2, "roots.Count <= 2");
// Check difference polynomial extremal values.
bool approximates = true;
foreach (double x in roots)
{
if (Math.Abs(deviation.GetValue(x)) > tolerance)
{
approximates = false;
break;
}
}
if (approximates)
{// Approximation is good enough.
points.Add(new Point(x1, polynomial.GetValue(x1)));
points.Add(new Point(x2, polynomial.GetValue(x2)));
return points;
}
if (roots.Count == 2)
{
if (roots[0] == roots[1])
roots.RemoveAt(1);
else if (roots[0] > roots[1])
{// Sort the roots
// Swap roots
double x = roots[0];
roots[0] = roots[1];
roots[1] = x;
}
}
// Add the end abscissas.
roots.Add(x2);
// First subinterval.
Collection pts = Approximate(polynomial, x1, roots[0], tolerance);
// Copy all points.
foreach (Point pt in pts)
{
points.Add(pt);
}
// The remnant of subintervals.
for (int i = 0; i < roots.Count - 1; ++i)
{
pts = Approximate(polynomial, roots[i], roots[i + 1], tolerance);
// Copy all points but the first one.
for (int j = 1; j < pts.Count; ++j)
{
points.Add(pts[j]);
}
}
return points;
}
///
/// Gets the difference between given polynomial and the straight line passing through its node points.
///
/// The polynomial.
/// The abscissas start.
/// The abscissas stop.
///
static Polynomial DeviationPolynomial(Polynomial polynomial, double x1, double x2)
{
double y1 = polynomial.GetValue(x1);
double y2 = polynomial.GetValue(x2);
double a = (y2 - y1) / (x2 - x1);
double b = y1 - a * x1;
if (a != 0)
return polynomial.Subtract(new Polynomial(new double[] { b, a }));
else if (b != 0)
return polynomial.Subtract(new Polynomial(new double[] { b }));
else
return polynomial;
}
}
In the code above I'm using the helper class Polynomial encapsulating operations on polynomials including addition, subtraction, dividing, root finding, etc. It's ported from "Numerical Recipes in C, 2-nd Edition" book with some additions and bug fixes.
The sample supplied with this article is Visual Studio 2008 solution targeted to .NET 3.5. It contains WPF Windows Application project designed to demonstrate some curves drawn with cubic spline. You can select one of the curves from Combo Box at the top of the Window, experiment with point counts, tolerance and set appropriate XY Scales. You can even add you own curve, but this requires coding as follows:
- Add your curve name to CurveNames enum.
- Add your curve implementation to Curves region.
Add call to your curve to OnRender override. - In the sample I use Path elements on the custom Canvas to render the curve but in real application you would probably use some more effective approach like visual layer rendering.
使用Cubic Spline通过一组2D点绘制平滑曲线的更多相关文章
- 平滑算法:三次样条插值(Cubic Spline Interpolation)
https://blog.csdn.net/left_la/article/details/6347373 感谢强大的google翻译. 我从中认识到了航位推算dead reckoning,立方体样条 ...
- iOS开发——图层OC篇&Quartz 2D各种绘制实例
Quartz 2D各种绘制实例 首先说一下,本篇文章只是介绍怎么使用Quartz 2D绘制一些常用的图像效果,关于Quartz和其他相关技术请查看笔者之前写的完整版(Quartz 2D详解) 一:画线 ...
- emwin之2D图形绘制问题
@2018-09-03 [问题] 在 WM_PAINT 消息分支里绘制2D图形可以正常显示,而在外部函数或按钮按下事件的响应消息分支下等处,绘制2D图形则不显示. [解决] 在除消息WM_PAINT分 ...
- Opencv 三次样条曲线(Cubic Spline)插值
本系列文章由 @YhL_Leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/47707679 1.样条曲线简介 样条曲 ...
- 【js类库Raphaël】使用raphael.js根据点坐标绘制平滑曲线
一.可供参考的文档资料. raphaeljs官网:http://raphaeljs.com/ w3c关于path的介绍:http://www.w3.org/TR/2003/REC-SVG11-200 ...
- Qt 绘制平滑曲线
本文介绍在 Qt 中绘制平滑曲线的实现,调用下面的函数 SmoothCurveGenerator::generateSmoothCurve(points) 即可.默认曲线的 2 个顶点之间被分割为 1 ...
- Direct3D 2D文本绘制
现在学习下Direct3D在窗口中绘制一些文本信息,ID3DXFont接口负责创建字体和绘制二维的文本.我们介绍下ID3DXFont的用法. 1.创建LPD3DXFONT接口 LPD3DXFONT g ...
- iOS - Quartz 2D 画板绘制
1.绘制画板 1.1 绘制简单画板 PaintBoardView.h @interface PaintBoardView : UIView @end PaintBoardView.m @interfa ...
- QT5之2D绘图-绘制路径
在绘制一个复杂的图形的时候,如果你需要重复绘制一个这样的图形,就可以使用到QPainterPath类,然后使用QPainter::drawPath()来进行绘制. QPainterPath类为绘制操作 ...
随机推荐
- MySQL搜索:WHERE
MySQL指定搜索条件进行搜索能够使用where条件. 在SELECT语句中.数据依据WHERE子语句中指定的条件进行过滤,WHERE子语句在表名之后给出. product表例如以下: a 查找价格等 ...
- [CSS] Build Responsive CSS Layouts with Tachyons
Building responsive css layouts is critical in any modern website. Tachyons makes this easy by desig ...
- B/S系统的前台和后台数据转递机制探究
作者:朱金灿 来源:http://blog.csdn.net/clever101 说实话写这篇文章超出了我的能力范围之外(因为我并没有多少Web开发经验),我所期待的是能起一个抛砖引玉的作用--希望高 ...
- DOM 的classList 属性
1.添加1个或多个class add(class1, class2, ...) 2.移除class remove(class1, class2, ...) 3.判断指定的类名是否存在 contains ...
- 【37%】【poj1436】Horizontally Visible Segments
Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5200 Accepted: 1903 Description There ...
- js进阶 10-9 -of-type型子元素伪类选择器
js进阶 10-9 -of-type型子元素伪类选择器 一.总结 一句话总结:三种和first.last等有关的选择器. 1.:first和:first-child和:first-of-type的区别 ...
- php实现 明明的随机数
php实现 明明的随机数 一.总结 一句话总结: 1.asort是干嘛的? asort — 对数组进行排序并保持索引关系 2.从控制台取数据怎么取? trim(fgets(STDIN)) 3.多组测试 ...
- Android ReentrantLock
synchronized原语和ReentrantLock在一般情况下没有什么区别,但是在非常复杂的同步应用中,请考虑使用ReentrantLock,特别是遇到下面2种需求的时候. 1.某个线程在等待一 ...
- cellForRowAtIndexPath 设置图片
#import "UIImageView+MJWebCache.h" #import "MJPhotoBrowser.h" #import "MJPh ...
- Andrew Ng Machine Learning 专题【Logistic Regression & Regularization】
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探 ...