原文Draw a smooth curve through a set of 2D points with Cubic Spline

I would like to provide you with the code to draw a smooth curve through a set of 2D points with cubic spline. If we have some tabulated function yi=f(xi) it's easy to get its cubic spline interpolant with some library code. For example, you could use the code from "Numerical Recipes in C, 2-nd Edition" book - proved source of a lot of math algorithms. Cubic spline gives an excellent interpolation in the most cases.

Cubic spline is comprised from a sequence of cubic polynomials, so to draw the curve we have to approximate each partial cubic polynomial with the polyline.

Let we have a cubic polynomial defined at [x1, x2] interval.

To approximate it with polyline we should do the following:

  1. Get the deviation polynomial, i.e. the difference between the initial cubic polynomial and the straight line passing through its left and right bound points. This polynomial is either identically equal to zero or has one or two extremum(s) at [x1, x2].
  2. Evaluate the values of deviation polynomial at extremum points. It its absolute values are lower than the tolerance then the initial cubic polynomial can be approximated with a straight line passing through points (x1, y1) and (x2, y2). Otherwise
  3. Split the initial interval  [x1, x2] on two or three subintervals (depending on extremum count) and repeat the procedure recursively from (1) for each of subintervals.

///

/// Approximating Cubic Polynomial with PolyLine.

///

public static class CubicPolynomialPolylineApproximation

{

///

/// Gets the approximation of the polynomial with polyline.

///

/// The polynomial.

/// The abscissas start.

/// The abscissas stop.

/// The tolerance is the maximum distance from the cubic

/// polynomial to the approximating polyline.

///

public static Collection Approximate(Polynomial polynomial, double x1, double x2, double tolerance)

{

Debug.Assert(x1 <= x2, "x1 <= x2");

Debug.Assert(polynomial.Order == 3, "polynomial.Order == 3");

Collection points = new Collection();

// Get difference between given polynomial and the straight line passing its node points.

Polynomial deviation = DeviationPolynomial(polynomial, x1, x2);

Debug.Assert(deviation.Order == 3, "diff.Order == 3");

if (deviation[0] == 0 && deviation[1] == 0 && deviation[2] == 0 && deviation[3] == 0)

{

points.Add(new Point(x1, polynomial.GetValue(x1)));

points.Add(new Point(x2, polynomial.GetValue(x2)));

return points;

}

// Get previouse polynomial first derivative

Polynomial firstDerivative = new Polynomial(new double[] { deviation[1], 2 * deviation[2], 3 * deviation[3] });

// Difference polinomial extremums.

// Fing first derivative roots.

Complex[] complexRoots = firstDerivative.Solve();

// Get real roots in [x1, x2].

List roots = new List();

foreach (Complex complexRoot in complexRoots)

{

if (complexRoot.Imaginary == 0)

{

double r = complexRoot.Real;

if (r > x1 && r < x2)

roots.Add(r);

}

}

Debug.Assert(roots.Count > 0, "roots.Count > 0");

Debug.Assert(roots.Count <= 2, "roots.Count <= 2");

// Check difference polynomial extremal values.

bool approximates = true;

foreach (double x in roots)

{

if (Math.Abs(deviation.GetValue(x)) > tolerance)

{

approximates = false;

break;

}

}

if (approximates)

{// Approximation is good enough.

points.Add(new Point(x1, polynomial.GetValue(x1)));

points.Add(new Point(x2, polynomial.GetValue(x2)));

return points;

}

if (roots.Count == 2)

{

if (roots[0] == roots[1])

roots.RemoveAt(1);

else if (roots[0] > roots[1])

{// Sort the roots

// Swap roots

double x = roots[0];

roots[0] = roots[1];

roots[1] = x;

}

}

// Add the end abscissas.

roots.Add(x2);

// First subinterval.

Collection pts = Approximate(polynomial, x1, roots[0], tolerance);

// Copy all points.

foreach (Point pt in pts)

{

points.Add(pt);

}

// The remnant of subintervals.

for (int i = 0; i < roots.Count - 1; ++i)

{

pts = Approximate(polynomial, roots[i], roots[i + 1], tolerance);

// Copy all points but the first one.

for (int j = 1; j < pts.Count; ++j)

{

points.Add(pts[j]);

}

}

return points;

}

///

/// Gets the difference between given polynomial and the straight line passing through its node points.

///

/// The polynomial.

/// The abscissas start.

/// The abscissas stop.

///

static Polynomial DeviationPolynomial(Polynomial polynomial, double x1, double x2)

{

double y1 = polynomial.GetValue(x1);

double y2 = polynomial.GetValue(x2);

double a = (y2 - y1) / (x2 - x1);

double b = y1 - a * x1;

if (a != 0)

return polynomial.Subtract(new Polynomial(new double[] { b, a }));

else if (b != 0)

return polynomial.Subtract(new Polynomial(new double[] { b }));

else

return polynomial;

}

}

In the code above I'm using the helper class Polynomial encapsulating operations on polynomials including addition, subtraction, dividing, root finding, etc. It's ported from "Numerical Recipes in C, 2-nd Edition" book with some additions and bug fixes.

The sample supplied with this article is Visual Studio 2008 solution targeted to .NET 3.5. It contains WPF Windows Application project designed to demonstrate some curves drawn with cubic spline. You can select one of the curves from Combo Box at the top of the Window, experiment with point counts, tolerance and set appropriate XY Scales. You can even add you own curve, but this requires coding as follows:

    1. Add your curve name to CurveNames enum.
    2. Add your curve implementation to Curves region.
      Add call to your curve to OnRender override.
    3. In the sample I use Path elements on the custom Canvas to render the curve but in real application you would probably use some more effective approach like visual layer rendering.

使用Cubic Spline通过一组2D点绘制平滑曲线的更多相关文章

  1. 平滑算法:三次样条插值(Cubic Spline Interpolation)

    https://blog.csdn.net/left_la/article/details/6347373 感谢强大的google翻译. 我从中认识到了航位推算dead reckoning,立方体样条 ...

  2. iOS开发——图层OC篇&Quartz 2D各种绘制实例

    Quartz 2D各种绘制实例 首先说一下,本篇文章只是介绍怎么使用Quartz 2D绘制一些常用的图像效果,关于Quartz和其他相关技术请查看笔者之前写的完整版(Quartz 2D详解) 一:画线 ...

  3. emwin之2D图形绘制问题

    @2018-09-03 [问题] 在 WM_PAINT 消息分支里绘制2D图形可以正常显示,而在外部函数或按钮按下事件的响应消息分支下等处,绘制2D图形则不显示. [解决] 在除消息WM_PAINT分 ...

  4. Opencv 三次样条曲线(Cubic Spline)插值

    本系列文章由 @YhL_Leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/47707679 1.样条曲线简介 样条曲 ...

  5. 【js类库Raphaël】使用raphael.js根据点坐标绘制平滑曲线

     一.可供参考的文档资料. raphaeljs官网:http://raphaeljs.com/ w3c关于path的介绍:http://www.w3.org/TR/2003/REC-SVG11-200 ...

  6. Qt 绘制平滑曲线

    本文介绍在 Qt 中绘制平滑曲线的实现,调用下面的函数 SmoothCurveGenerator::generateSmoothCurve(points) 即可.默认曲线的 2 个顶点之间被分割为 1 ...

  7. Direct3D 2D文本绘制

    现在学习下Direct3D在窗口中绘制一些文本信息,ID3DXFont接口负责创建字体和绘制二维的文本.我们介绍下ID3DXFont的用法. 1.创建LPD3DXFONT接口 LPD3DXFONT g ...

  8. iOS - Quartz 2D 画板绘制

    1.绘制画板 1.1 绘制简单画板 PaintBoardView.h @interface PaintBoardView : UIView @end PaintBoardView.m @interfa ...

  9. QT5之2D绘图-绘制路径

    在绘制一个复杂的图形的时候,如果你需要重复绘制一个这样的图形,就可以使用到QPainterPath类,然后使用QPainter::drawPath()来进行绘制. QPainterPath类为绘制操作 ...

随机推荐

  1. (一一六)新浪微博client的离线缓存实现思路

    上一节(一一五)利用NSKeyedArchiver实现随意对象转为二进制介绍了将随意对象转化为二进制数据和还原的方法.可用于实现本节介绍的微博数据离线缓存. 通过新浪官方的API能够发现,返回的微博数 ...

  2. html5-8 如何控制html5中的视频标签和音频标签

    html5-8 如何控制html5中的视频标签和音频标签 一.总结 一句话总结:找到视频或者音频的element对象,然后查手册看对应的方法或者属性就可以,里面有控制的. 1.如何控制html5中的视 ...

  3. poi读取excell表格

    原文链接:http://blog.csdn.net/qq_37936542/article/details/79024847 最近项目需要实现一个将excell中的数据导入数据库,在网上找到这篇文章, ...

  4. JM-1 手机网站开发测试环境搭建

    JM-1 手机网站开发测试环境搭建 一.总结 一句话总结:WEB服务器环境可实现局域网内轻松访问.360wifi可以实现局域网. 二.微网站开发环境: 1.把微网站放到本机wamp环境下,用pc浏览器 ...

  5. WIN32汇编语言中位图的使用

    说到位图.我们事实上非常早就接触过.从最早接触计算机,我们应该就知道有图片这个东西,然后再进一步说,图片在电脑上有好几种格式比方jpg. gif .png.pcx.bmp等等,当中bmp格式的图片文件 ...

  6. [Ramda] Create an Array From a Seed Value with Ramda's unfold

    In this lesson we'll look at how you can use Ramda's unfold function to generate a list of values ba ...

  7. swift菜鸟入门视频教程-01-基础部分

    本人自己录制的swift菜鸟入门,欢迎大家拍砖,有什么问题能够在这里留言. 主要内容: 常量和变量 凝视 分号 整数 浮点数 类型安全和类型判断 数值型字面量 数值型类型转换 类型别名 布尔值 元组 ...

  8. PyCharm 重构(refactor)快捷键

    提取变量(比如一个函数会返回一个变量值):ctrl + alt + v(v:variable) 将某段代码封装为一个函数(函数+函数调用):ctrl + alt + m(m:method)

  9. 【32.26%】【codeforces 620C】Pearls in a Row

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  10. Android最新组件RecyclerView,替代ListView

    转载请注明出处:http://blog.csdn.net/allen315410/article/details/40379159 万众瞩目的android最新5.0版本号不久前已经正式公布了,对于我 ...