OpenCV 图像清晰度评价(相机自动对焦)
相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上。这时候物体的成像比较清晰,图像细节信息丰富。
相机自动对焦的过程,其实就是对成像清晰度评价的过程,对焦不准确,拍摄出来的图像清晰度低,视觉效果模糊,如果是在工业检测测量领域,对焦不准导致的后果可能是致命的;对焦准确的图像清晰度较高,层次鲜明,对比度高。
图像清晰度评价算法有很多种,在空域中,主要思路是考察图像的领域对比度,即相邻像素间的灰度特征的梯度差;在频域中,主要思路是考察图像的频率分量,对焦清晰的图像高频分量较多,对焦模糊的图像低频分量较多。
这里实现3种清晰度评价方法,分别是Tenengrad梯度方法、Laplacian梯度方法和方差方法。
Tenengrad梯度方法
Tenengrad梯度方法利用Sobel算子分别计算水平和垂直方向的梯度,同一场景下梯度值越高,图像越清晰。以下是具体实现,这里衡量的指标是经过Sobel算子处理后的图像的平均灰度值,值越大,代表图像越清晰。
#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp>
using namespace std;
using namespace cv;
int main()
{
Mat imageSource = imread("2.jpg");
Mat imageGrey;
cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
Mat imageSobel;
Sobel(imageGrey, imageSobel, CV_16U, 1, 1);
//图像的平均灰度
double meanValue = 0.0;
meanValue = mean(imageSobel)[0];
//double to string
stringstream meanValueStream;
string meanValueString;
meanValueStream << meanValue;
meanValueStream >> meanValueString;
meanValueString = "Articulation(Sobel Method): " + meanValueString;
putText(imageSource, meanValueString, Point(20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 25), 2);
imshow("Articulation", imageSource);
waitKey();
}
使用三张测试图片模拟不同对焦。第一张最清晰,得分最高,第二三张越来越模糊,得分依次降低。
Laplacian梯度方法:
Laplacian梯度是另一种求图像梯度的方法,在上例的OpenCV代码中直接替换Sobel算子即可。
#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp>
using namespace std;
using namespace cv;
int main()
{
Mat imageSource = imread("1.jpg");
Mat imageGrey;
cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
Mat imageSobel;
Laplacian(imageGrey, imageSobel, CV_16U);
//Sobel(imageGrey, imageSobel, CV_16U, 1, 1);
//图像的平均灰度
double meanValue = 0.0;
meanValue = mean(imageSobel)[0];
//double to string
stringstream meanValueStream;
string meanValueString;
meanValueStream << meanValue;
meanValueStream >> meanValueString;
meanValueString = "Articulation(Laplacian Method): " + meanValueString;
putText(imageSource, meanValueString, Point(20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 25), 2);
imshow("Articulation", imageSource);
waitKey();
}
用同样的三张测试图片测试,结果一致,随着对焦模糊得分降低:
方差方法:
方差是概率论中用来考察一组离散数据和其期望(即数据的均值)之间的离散(偏离)成都的度量方法。方差较大,表示这一组数据之间的偏差就较大,组内的数据有的较大,有的较小,分布不均衡;方差较小,表示这一组数据之间的偏差较小,组内的数据之间分布平均,大小相近。
对焦清晰的图像相比对焦模糊的图像,它的数据之间的灰度差异应该更大,即它的方差应该较大,可以通过图像灰度数据的方差来衡量图像的清晰度,方差越大,表示清晰度越好。
#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp>
using namespace std;
using namespace cv;
int main()
{
Mat imageSource = imread("2.jpg");
Mat imageGrey;
cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
Mat meanValueImage;
Mat meanStdValueImage;
//求灰度图像的标准差
meanStdDev(imageGrey, meanValueImage, meanStdValueImage);
double meanValue = 0.0;
meanValue = meanStdValueImage.at<double>(0, 0);
//double to string
stringstream meanValueStream;
string meanValueString;
meanValueStream << meanValue*meanValue;
meanValueStream >> meanValueString;
meanValueString = "Articulation(Variance Method): " + meanValueString;
putText(imageSource, meanValueString, Point(20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 25), 2);
imshow("Articulation", imageSource);
waitKey();
}
方差数值随着清晰度的降低逐渐降低:
在工业应用中,最清晰的对焦拍摄出来的图像不一定是最好的,有可能出现摩尔纹(水波纹)现象,一般需要在最清晰对焦位置附件做一个微调。
OpenCV 图像清晰度评价(相机自动对焦)的更多相关文章
- OpenCV 图像清晰度(相机自动对焦)
相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上.这时候物体的成像比较清晰,图像细节信息丰富. 相 ...
- Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结
Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 ...
- Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理
Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理 1.1. 图像边缘一般都是通过对图像进行梯度运算来实现的1 1.2. Remark: 1 1.3. 1.失焦检测. 衡量画面模糊的主要方 ...
- 相机自动对焦AF原理
相机自动对焦AF原理 AF性能是判断相机好坏的重要指标,主要从准确度和速度两个方面来进行考察,本文将介绍自动对焦的几种方式. 一.凸透镜成像原理 二.三种对焦方法 有公式在手,只要给相机安个测距仪就好 ...
- <学习opencv>图像和大型阵列类型
OPenCV /*=========================================================================*/ // 图像和大型阵列类型 /* ...
- <学习opencv>图像、视频和数据文件
/*=========================================================================*/ // openCV中的函数 /*====== ...
- OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放
这篇已经写得很好,真心给作者点个赞.题目都是直接转过来的,直接去看吧. Reference Link : http://blog.csdn.net/poem_qianmo/article/detail ...
- 【OpenCV新手教程之十三】OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26157633 作者:毛星云(浅墨) ...
- Opencv 图像叠加 添加水印
Opencv 图像叠加 添加水印 C++: void Mat::copyTo(OutputArray m) const C++: void Mat::copyTo(OutputArray m, Inp ...
随机推荐
- 5、linux下应用字符串相关调用函数列举说明
1.函数原型int strcmp(const char *s1,const char *s2);设这两个字符串为s1,s2,规则当s1<s2时,返回为负数当s1=s2时,返回值= 0当s1> ...
- 简要分析武汉一起好P2P平台的核心功能
写作背景 加入武汉一起好,正式工作40天了,对公司的核心业务有了更多的了解,想梳理下自己对于P2P平台的认识. 武汉一起好,自己运营的yiqihao.com,是用PHP实现的,同时也帮助若干P2P平台 ...
- 【Nutch2.2.1基础教程之1】nutch相关异常 分类: H3_NUTCH 2014-08-08 21:46 1549人阅读 评论(2) 收藏
1.在任务一开始运行,注入Url时即出现以下错误. InjectorJob: Injecting urlDir: urls InjectorJob: Using class org.apache.go ...
- Activity 调用Service的方法
一般来说,Activity调用Service 分为两种:进程内调用和进程间调用.进程内调用时比较常用的一种,在进程内调用中我们常常使用的是bindService来启动Service(关于这种启动方式的 ...
- LSH︱python实现局部敏感随机投影森林——LSHForest/sklearn(一)
关于局部敏感哈希算法.之前用R语言实现过,可是由于在R中效能太低.于是放弃用LSH来做类似性检索.学了python发现非常多模块都能实现,并且通过随机投影森林让查询数据更快.觉得能够试试大规模应用在数 ...
- iOS开发Block的介绍以及Block的循环引用问题
1:block的循环引用问题最主要记住两点: 如果[block内部]使用[外部声明的强引用]访问[对象A], 那么[block内部]会自动产生一个[强引用]指向[对象A] 如果[block内部]使用[ ...
- QT代理Delegates使用实例(三种代理控件)
效果如下,在表格的单元格中插入控件,用Delegates方式实现 源代码如下: main.cpp文件 #include <QApplication>#include <QStanda ...
- http://lists.mysql.com/mysql
http://lists.mysql.com/mysql http://www.ehowstuff.com/how-to-fix-mysql-database-error-cant-create-da ...
- 数据库使用truncate清理非常多表时碰到外键约束时怎么高速解决
问题处理思路: 1. 先将数据库中涉及到外键约束的表置为无效状态 2.待清除全然部表数据后再将外键约束的表置为可用状态 详细实现脚本: declare begin for vv_sql in (SEL ...
- JavaScript经典面试题(二)
前言: 近年来T行业就业者越来越多,有关于编程行业的高薪工作也变得越来越难找,竞争力越来越大,想要在众多的应聘者当中脱颖而出,面试题和笔试题一定要多加研究和琢磨,以下记录的是自己的面试过程之中遇到的一 ...