标题指的边集是说这道题的套餐, 是由几条边构成的。

思路是先做一遍最小生成树排除边, 因为如果第一次做没有加入的边, 到后来新加入了很多权值为0的边,这些边肯定排在最前面,然后这条边的前面的那些边肯定都要再扫一遍, 也就是这条边无论如何都不会选。

那么后来就是二进制枚举套餐, 从头开始, 加入套餐中的边然后权值加上套餐的权值, 然后把之前筛选下来的边做kruskal就ok了。

注意要对数据范围敏感, 这里套餐最多也就8个所以可以二进制枚举子集。

#include<cstdio>
#include<vector>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 1123;
int x[MAXN], y[MAXN], f[MAXN];
int cost[MAXN], n, m, q, cnt, sum;
struct node
{
int u, v, w;
node(int u = 0, int v = 0, int w = 0) : u(u), v(v), w(w) {}
bool operator < (const node& rhs) const
{
return w < rhs.w;
}
};
vector<node> Edge, need;
vector<int> k[9]; int find(int x)
{
if(f[x] != x)
f[x] = find(f[x]);
return f[x];
} int solve()
{
int ret = 0;
REP(i, 0, need.size())
{
int u = find(need[i].u), v = find(need[i].v);
if(u != v)
{
f[u] = v;
ret += need[i].w;
if(--cnt == 1) break;
}
}
return ret;
} int main()
{
int T;
scanf("%d", &T); while(T--)
{
Edge.clear(); need.clear();
scanf("%d%d", &n, &q);
REP(i, 0, q)
{
int t, x; k[i].clear();
scanf("%d%d", &t, &cost[i]);
while(t--)
{
scanf("%d", &x);
k[i].push_back(x);
}
} REP(i, 1, n + 1) scanf("%d%d", &x[i], &y[i]), f[i] = i;
REP(i, 1, n + 1)
REP(j, i + 1, n + 1)
{
int t = (x[i]-x[j]) * (x[i]-x[j]) + (y[i]-y[j]) * (y[i]-y[j]);
Edge.push_back(node(i, j, t));
}
sort(Edge.begin(), Edge.end()); int ans = 0; cnt = n;
REP(i, 0, Edge.size())
{
int u = find(Edge[i].u), v = find(Edge[i].v);
if(u != v)
{
need.push_back(Edge[i]);
f[u] = v;
ans += Edge[i].w;
if(--cnt == 1) break; //注意是1
}
} REP(num, 0, 1 << q)
{
sum = 0; cnt = n;
REP(i, 1, n + 1) f[i] = i;
REP(i, 0, q)
if(num & (1 << i))
{
sum += cost[i];
REP(j, 0, k[i].size())
{
int u = find(k[i][j]), v = find(k[i][0]);
if(u != v) f[u] = v, cnt--;
}
} sum += solve();
ans = min(ans, sum);
} printf("%d\n", ans);
if(T) puts("");
} return 0;
}

紫书 例题 11-3 UVa 1151 (有边集的最小生成树+二进制枚举子集)的更多相关文章

  1. 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)

    这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...

  2. 紫书 例题8-3 UVa 1152(中途相遇法)

    这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...

  3. 紫书 例题8-12 UVa 12627 (找规律 + 递归)

    紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, ...

  4. 紫书 例题8-4 UVa 11134(问题分解 + 贪心)

     这道题目可以把问题分解, 因为x坐标和y坐标的答案之间没有联系, 所以可以单独求两个坐标的答案 我一开始想的是按照左区间从小到大, 相同的时候从右区间从小到大排序, 然后WA 去uDebug找了数据 ...

  5. 紫书 例题8-17 UVa 1609 (构造法)(详细注释)

    这道题用构造法, 就是自己依据题目想出一种可以得到解的方法, 没有什么规律可言, 只能根据题目本身来思考. 这道题的构造法比较复杂, 不知道刘汝佳是怎么想出来的, 我想的话肯定想不到. 具体思路紫书上 ...

  6. 紫书 例题 9-5 UVa 12563 ( 01背包变形)

    总的来说就是价值为1,时间因物品而变,同时注意要刚好取到的01背包 (1)时间方面.按照题意,每首歌的时间最多为t + w - 1,这里要注意. 同时记得最后要加入时间为678的一首歌曲 (2)这里因 ...

  7. 【uva 1151】Buy or Build(图论--最小生成树+二进制枚举状态)

    题意:平面上有N个点(1≤N≤1000),若要新建边,费用是2点的欧几里德距离的平方.另外还有Q个套餐,每个套餐里的点互相联通,总费用为Ci.问让所有N个点连通的最小费用.(2组数据的输出之间要求有换 ...

  8. UVA 1151 买还是建(最小生成树)

    买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...

  9. 紫书 例题 10-26 UVa 11440(欧拉函数+数论)

    这里用到了一些数论知识 首先素因子都大于M等价与M! 互质 然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理) 又因为N>=M, 所以N!为M! ...

随机推荐

  1. input的radio根据value和name反向显示

    1.获取radio的值,是根据name设置一组单选框. 例如: <div id="sexBox"> <input type="radio" i ...

  2. xgboost学习

    1.原理 https://www.cnblogs.com/zhouxiaohui888/p/6008368.html 2.实战 xgboost中比较重要的参数介绍: (1)学习率:learning r ...

  3. Numpy的使用规则

    之前安装的python版本是3.7 各种库都是自己一个一个下载安装的 很操心 各种缺功能 后来发现了anaconda 啊 真是一个好东西 简单来说 它就是一个涵盖大部分常用库的python包 一次安装 ...

  4. 2019-03-20 用SSIS把Excel中的数据导出来保存到SQLServer中

    Control Flow 1.配置 好 图形 2.去变量那 配置好 文件路径 和 存储过程 3.在SQL Server创建对应的存储过程,该存储过程的功能是每次导入是清空原有的数据 4.如果不懂的参考 ...

  5. SQL的运算符优先级

    注: 1.乘除的优先级高于加减: 2.同一优先级运算符从左向右执行: 3.括号内的运算先执行.

  6. JS中的NaN

    什么是NaN?它的类型是什么?如何可靠地测试一个值是否等于NaN? NaN属性表示“不是数字”的值.这个特殊值是由于一个操作数是非数字的(例如“abc”/ 4)或者因为操作的结果是非数字而无法执行的. ...

  7. PHP中对hmac_sha1签名算法的实现方法

    最近研究网宿云文档API,其中用到了一种叫hmac_sha1的签名算法: HMAC-SHA1: HMAC是哈希运算消息认证码 (Hash-based Message Authentication Co ...

  8. Android Java 程序员必备开发工具

    对于Java,有两种截然不同的观点:一种认为Java是最简单功能最强大的编程语言之一,另一种则表示这种编程语言既难用又复杂. 下面这些工具或许功能和作用不同,但是有着一个共同的主旨,那就是——它们都是 ...

  9. npm API文档

    npm API文档 https://docs.npmjs.com/

  10. Maven导入ojdbc14.jar和ojdbc6.jar

    Maven导入ojdbc14.jar和ojdbc6.jar 学习了:http://blog.csdn.net/johon_medison/article/details/51689690 在 ‘运行’ ...