链接:

https://loj.ac/problem/6229

题意:

$$F(n)=\sum_{i=1}n\sum_{j=1}i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)}$$

让你求 \(F(n) \bmod1000000007\)。

题解:

设\(\begin{align} f(n)=\sum_{i=1}^n\frac{lcm(i,n)}{gcd(i,n)}&=\sum_{i=1}^n\frac{n*i}{(i,n)^2}\\ &=\sum_{i=1}^n\sum_{d|n}[(i,n)=d]\frac{n*i}{d^2}\\ &=\sum_{d|n}\sum_{i=1}^{[\frac nd]}[(i,\frac nd)=1]\frac{n*i}d\\ &=\sum_{d|n}d\sum_{i=1}^d[(i,d)=1]*i\\ &=\frac 12(1+\sum_{d|n}d^2\varphi(d)) \end{align}\)。

即求 \(\sum_{i=1}^n\sum_{d|i}d^2\varphi(d)=\sum_{i=1}^n\sum_{d=1}^{[\frac ni]}d^2\varphi(d)\)。

令 \(\phi'(n)=\sum_{i=1}^ni^2\varphi(i)\)。

因为 \(\sum_{d|n}d^2\varphi(d)*(\frac nd)^2=n^2\sum_{d|n}\varphi(d)=n^3\)。

所以,

\(\begin{align} \sum_{i=1}^ni^3=[\frac{n(n+1)}{2}]^2&=\sum_{i=1}^n\sum_{d|i}d^2\varphi(d)*(\frac id)^2\\ &=\sum_{i=1}^ni^2\sum_{d=1}^{[ \frac ni]}d^2\varphi(d)\\ &=\sum_{i=1}^ni^2\phi'([\frac ni]) \end{align}\)。

所以得到:\(\phi'(n)=[\frac{n(n+1)}{2}]^2-\sum_{i=2}^ni^2\phi'([\frac ni])\)。

可以杜教筛先预处理前 \(n^{2/3}\),原问题可以在复杂度\(O(n^{2/3}log(n))\)内解决。

整合一下,就是:

推公式可以得到( 结合公式4 ):\(ans=\sum_{d=1}^n\sum_{i=1}^{\lfloor{n\over d}\rfloor}\sum_{j=1}^i ij[\gcd(i,j)=1]\)。

因为存在恒等式:\(\sum_{i=1}^ni[\gcd(i,n)=1]={[n=1]+n\varphi(n)\over 2}\)。

所以有:\(ans={n\over 2}+{1\over 2}\sum_{d=1}^n\sum_{i=1}^{\lfloor{n\over d}\rfloor}i^2\varphi(i)\)。

考虑 \(\sum_{i=1}^{n}i^2\varphi(i)\)出现的次数,可以得到: \(ans={n\over 2}+{1\over 2}\sum_{i=1}^ni^2\varphi(i)\lfloor{n\over i}\rfloor\)。

其中,\(\sum_{i=1}^ni^2 = \frac{n\cdot(n+1)\cdot(2n+1)}{6}\),\(\varphi(i)\)为欧拉函数。

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int maxn = 1e6+100;
const int mod = 1e9+7;
int n;
int p[maxn],phi[maxn],pre[maxn]; int inv2,inv6;
ll qpower(ll a,ll b,ll mod)
{
ll res = 1;
while(b>0) {
if(b&1) res = res * a % mod;
b >>= 1;
a = a * a % mod;
}
return res;
}
void init(int n)
{
phi[1]=1;
for(int i=2;i<=n;i++)
{
if(p[i]==0) p[++*p]=i,phi[i]=i-1;
for(int j=1;j<=*p && 1LL*p[j]*i<=n;j++)
{
p[p[j]*i]=1;
if(i%p[j]) phi[i*p[j]]=phi[i]*phi[p[j]];
else
{
phi[i*p[j]]=phi[i]*p[j];
break;
}
}
}
for(int i=1;i<=n;i++) {
pre[i]=(pre[i-1]+1LL*phi[i]*i%mod*i)%mod;
}
}
map<ll,int> mp;
int calcinv2(ll l,ll r)
{
l %= mod;
r %= mod;
return (r - l + 1) * (l + r) % mod * inv2 % mod;
}
int calcinv6(ll n)
{
n %= mod;
return n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
}
int calc2(ll l,ll r)
{
return (calcinv6(r) - calcinv6(l-1) ) % mod;
}
int calc3(ll n)
{
return 1LL * calcinv2(1 , n) * calcinv2(1 , n) % mod;
}
int S(ll n)
{
if(n <= 1e6) return pre[n];
if(mp.count(n)) return mp[n];
int res = calc3(n);
for(ll i = 2, j; i <= n ;i = j + 1) {
j = n / (n / i);
res = (res - 1LL * calc2(i,j) * S(n / i)) % mod;
}
return mp[n] = res;
}
int main(int argc, char const *argv[]) { ll n;
std::cin >> n;
init(1000000);// 2/3
inv2 = qpower(2,mod-2,mod);
inv6 = qpower(6,mod-2,mod);
int ans = 0;
int last = 0;
for(ll i = 1, j; i <= n; i = j + 1) {
j = n /( n / i );
int cur = S(j);
ans = (ans + 1LL * (cur - last) * ( n / i)) % mod;
last = cur;
}
ans = (ans + n) % mod * inv2 % mod;
std::cout << (ans + mod) % mod << '\n';
cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n";
return 0;
}

LOJ 6229 LCM / GCD (杜教筛+Moebius)的更多相关文章

  1. 【51nod2026】Gcd and Lcm(杜教筛)

    题目传送门:51nod 我们可以先观察一下这个$f(x)=\sum_{d|x}\mu(d) \cdot d$. 首先它是个积性函数,并且$f(p^k)=1-p \ (k>0)$,这说明函数$f( ...

  2. P6070 [RC-02] GCD [杜教筛,莫比乌斯反演]

    没啥好说的,杜教筛板子题. \[\sum_{i=1}^{N} \sum_{j=1}^{N}\sum_{p=1}^{\lfloor \frac{N}{j} \rfloor}\sum_{q=1}^{\lf ...

  3. loj#6229. 这是一道简单的数学题 (??反演+杜教筛)

    题目链接 题意:给定\(n\le 10^9\),求:\(F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)} ...

  4. LOJ#6229. 这是一道简单的数学题(莫比乌斯反演+杜教筛)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^i\frac{lcm(i,j)}{gcd(i,j)}\] 答案对\(10^9+7\)取模. \(n< ...

  5. 【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)

    [LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\ ...

  6. LOJ6686 Stupid GCD(数论,欧拉函数,杜教筛)

    做题重心转移到 LOJ 了. 至于为什么,如果你知道“……”的密码,就去看吧. LOJ 上用户自创题大多数都不可做,今天看到个可做题(而且还是个水题),就来做了一发. 明显枚举立方根.(以下令 $m= ...

  7. P4450-双亲数,P5221-Product,P6055-[RC-02]GCD【莫比乌斯反演,杜教筛】

    除了最后一题都比较简单就写一起了 P4450-双亲数 题目链接:https://www.luogu.com.cn/problem/P4450 题目大意 给出\(A,B,d\)求有多少对\((a,b)\ ...

  8. LOJ# 572. 「LibreOJ Round #11」Misaka Network 与求和(min25筛,杜教筛,莫比乌斯反演)

    题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质 ...

  9. LOJ #6207 - 米缇(杜教筛+拉格朗日插值)

    LOJ 题面传送门 首先将 \(\sigma_k(ij)\) 展开: \[\sigma_k(ij)=\sum\limits_{x\mid i}\sum\limits_{y\mid j}[x\perp ...

随机推荐

  1. ADO.NET数据读取封装

    public class sqlserver { //private string sqlstr = System.ConfigurationManager.ConnectionStrings[&qu ...

  2. codeforces 710D Two Arithmetic Progressions(线性同余方程)

    题目链接: http://codeforces.com/problemset/problem/710/D 分析:给你两个方程 a1k + b1 and a2l + b2,求在一个闭区间[L,R]中有多 ...

  3. [ DB ] [ SQL ] [ SQL Server ] MS SQL 建立暫存表格 temp table - 轉載

    範例 SQL: IF OBJECT_ID(N'tempdb.dbo.#tmp_checkStatusCount', N'U') IS NOT NULL DROP TABLE #tmp_checkSta ...

  4. 记录一下 mysql 的查询中like字段的用法

    SELECT * from t_yymp_auth_role where role_name not like '%测试%' and role_name not like '%部门%' and rol ...

  5. Debian9.5 配置x11vnc远程桌面

    x11vnc是一个VNC服务器,它允许用户远程查看并用任何VNC查看器与真实的X显示器(即与物理监视器,键盘和鼠标相对应的显示器)进行交互.虽然它的原作者Karl Runge不再开发,但LibVNC和 ...

  6. CSS3新的UI方案

    文本新增样式 一.opacity:指定了一个元素的透明度 0~1 二.新增颜色模式rgba:很好的解决了背景透明,字体颜色不透明的需求. 三.文字阴影:text-shadow用来为文字添加阴影,而且可 ...

  7. 学习推荐《精通Python网络爬虫:核心技术、框架与项目实战》中文PDF+源代码

    随着大数据时代的到来,我们经常需要在海量数据的互联网环境中搜集一些特定的数据并对其进行分析,我们可以使用网络爬虫对这些特定的数据进行爬取,并对一些无关的数据进行过滤,将目标数据筛选出来.对特定的数据进 ...

  8. php自定义加密和解密

    <?php function _authcode($string, $operation = 'DECODE', $expiry = 0) { $key = 'c5s1t6o';    $cke ...

  9. Swift学习笔记(6)--字典

    1.定义 //1.基本定义 [key 1: value 1, key 2: value 2, key 3: value 3] var dict = ["name":"Xi ...

  10. iOS 平台上常见的安装包有三种,deb、ipa 和 pxl

    前言:目前 iOS 平台上常见的安装包有三种,deb.ipa 和 pxl. 其中 deb 格式是 Debian 系统(包含 Debian 和 Ubuntu )专属安装包格式,配合 APT 软件管理系统 ...