The shortest path

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1507    Accepted Submission(s): 773

Problem Description
There are n points on the plane, Pi(xi, yi)(1 <= i <= n), and xi < xj (i<j). You begin at P1 and visit all points then back to P1. But there is a constraint: 
Before you reach the rightmost point Pn, you can only visit the points those have the bigger x-coordinate value. For example, you are at Pi now, then you can only visit Pj(j > i). When you reach Pn, the rule is changed, from now on you can only visit the points those have the smaller x-coordinate value than the point you are in now, for example, you are at Pi now, then you can only visit Pj(j < i). And in the end you back to P1 and the tour is over.
You should visit all points in this tour and you can visit every point only once.
 
Input
The input consists of multiple test cases. Each case begins with a line containing a positive integer n(2 <= n <= 200), means the number of points. Then following n lines each containing two positive integers Pi(xi, yi), indicating the coordinate of the i-th point in the plane.
 
Output
For each test case, output one line containing the shortest path to visit all the points with the rule mentioned above.The answer should accurate up to 2 decimal places.
 
Sample Input
3
1 1
2 3
3 1
 
Sample Output
6.47

Hint: The way 1 - 3 - 2 - 1 makes the shortest path.

 
Author
8600
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  1217 2807 2544 1142 1548 
思路:双调欧几里得旅行商板子。
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n;
double dis[][],f[][];
struct nond{
int x,y;
}v[];
int cmp(nond a,nond b){
if(a.x==b.x) return a.y<b.y;
return a.x<b.x;
}
void pre(){
for(int i=;i<=n;i++)
for(int j=i;j<=n;j++)
dis[i][j]=dis[j][i]=sqrt((double)(v[i].x-v[j].x)*(v[i].x-v[j].x)+(v[i].y-v[j].y)*(v[i].y-v[j].y));
}
int main(){
while(scanf("%d",&n)!=EOF){
memset(dis,,sizeof(dis));
for(int i=;i<=n;i++)
scanf("%d%d",&v[i].x,&v[i].y);
sort(v+,v++n,cmp);
pre();
f[][]=f[][]=dis[][];
f[][]=*dis[][];
for(int i=;i<=n;i++){
for(int j=;j<i-;j++)
f[i][j]=f[j][i]=f[i-][j]+dis[i][i-];
f[i][i-]=f[i-][i]=f[i][i]=0x7f7f7f7f;
for(int j=;j<=i-;j++)
f[i-][i]=f[i][i-]=min(f[i][i-],f[j][i-]+dis[j][i]);
for(int j=;j<=i;j++)
f[i][i]=min(f[i][i],f[j][i]+dis[j][i]);
}
printf("%.2lf\n",f[n][n]);
}
}
 

HDU 2224 The shortest path的更多相关文章

  1. Hdu 4725 The Shortest Path in Nya Graph (spfa)

    题目链接: Hdu 4725 The Shortest Path in Nya Graph 题目描述: 有n个点,m条边,每经过路i需要wi元.并且每一个点都有自己所在的层.一个点都乡里的层需要花费c ...

  2. HDU 4725 The Shortest Path in Nya Graph [构造 + 最短路]

    HDU - 4725 The Shortest Path in Nya Graph http://acm.hdu.edu.cn/showproblem.php?pid=4725 This is a v ...

  3. HDU 4725 The Shortest Path in Nya Graph

    he Shortest Path in Nya Graph Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged o ...

  4. hdu 2807 The Shortest Path(矩阵+floyd)

    The Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. (中等) HDU 4725 The Shortest Path in Nya Graph,Dijkstra+加点。

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  6. HDU 4725 The Shortest Path in Nya Graph(构图)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. HDU 4725 The Shortest Path in Nya Graph (最短路)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  8. HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  9. hdu 4725 The Shortest Path in Nya Graph (最短路+建图)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

随机推荐

  1. [NOIP 2016] 蚯蚓

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4721 [算法] 首先,我们可以维护一个堆,堆中存放蚯蚓的长度,由于除当前蚯蚓其他的蚯 ...

  2. element快速开发建站的动态UI------优

    网站快速成型工具 只为这样的你:  Element,一套为开发者.设计师和产品经理准备的基于 Vue 2.0 的组件库,提供了配套设计资源,帮助你的网站快速成型 http://element.elem ...

  3. 网易UI自动化测试工具Airtest中导入air文件中的方法

    最近看了一下网易的Airtest ,UI测试工具,写了一些后在导入其他air文件中的.py文件,卡了一下,现在博客中纪录一下导入其他air文件的方式: 在Airtest 测试工具中,导入其他air文件 ...

  4. MVVM实现ViewModel获取View输入验证状态

    由于Binding只把Convert成功的值送往Source,当目标中的值Convert失败时Source的值依然是旧值,所以ViewModel必须获取View的输入验证状态,以下是本人的实现. 当“ ...

  5. .htaccess的基本用法与介绍

    ●自定义错误页 .htaccess的一个应用是自定义错误页面,这将使你可以拥有自己的.个性化的错误页面(例如找不到文件时),而不是你的服务商提供的错误页或没有任何页面.这会让你的网站在出错的时候看上去 ...

  6. 通过ASP.NET Ajax技术模拟实现NBA比赛文字直播功能

    文字直播是满足一些观看视频直播而条件不足的球迷所设定的比赛直播方式,例如在长途车上为了能够了解比赛的实时赛况但又限于流量和网速等问题,就出现了文字直播的方式.无论是拥有无线上网卡的笔记本电脑或者手机等 ...

  7. HTML 5的基本标签

    1.  文件开始标签<html> 在任何的一个HTML文件里,最先出现的HTML标签就是<html>,它用于表示该文件是以超文本标识语言(HTML)编写的.<html&g ...

  8. c++ 中一个类或者一个对象所占的字节数

    转载博客:转载地址https://www.cnblogs.com/JingHuanXiao/p/6080726.html 一个空的class在内存中多少字节?如果加入一个成员函数后是多大?这个成员函数 ...

  9. redis-linux

    redis3.0.4 server版本 jedis-2.7.2.jar spring-data-redis-1.6.0.RELEASE.jar commons-pool2-2.3.jar spring ...

  10. 去除安卓apk中的广告

    一般来说,安卓应用很多免费的apk都是有广告的.尽管我们要坚持尊重开发者,帮帮他们点击广告赚钱来可持续发展,但是有的时候,很多游戏中游戏实在是太影响感觉了,当找不到汉化破解版本的时候,也许需要亲自把它 ...