The shortest path

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1507    Accepted Submission(s): 773

Problem Description
There are n points on the plane, Pi(xi, yi)(1 <= i <= n), and xi < xj (i<j). You begin at P1 and visit all points then back to P1. But there is a constraint: 
Before you reach the rightmost point Pn, you can only visit the points those have the bigger x-coordinate value. For example, you are at Pi now, then you can only visit Pj(j > i). When you reach Pn, the rule is changed, from now on you can only visit the points those have the smaller x-coordinate value than the point you are in now, for example, you are at Pi now, then you can only visit Pj(j < i). And in the end you back to P1 and the tour is over.
You should visit all points in this tour and you can visit every point only once.
 
Input
The input consists of multiple test cases. Each case begins with a line containing a positive integer n(2 <= n <= 200), means the number of points. Then following n lines each containing two positive integers Pi(xi, yi), indicating the coordinate of the i-th point in the plane.
 
Output
For each test case, output one line containing the shortest path to visit all the points with the rule mentioned above.The answer should accurate up to 2 decimal places.
 
Sample Input
3
1 1
2 3
3 1
 
Sample Output
6.47

Hint: The way 1 - 3 - 2 - 1 makes the shortest path.

 
Author
8600
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  1217 2807 2544 1142 1548 
思路:双调欧几里得旅行商板子。
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n;
double dis[][],f[][];
struct nond{
int x,y;
}v[];
int cmp(nond a,nond b){
if(a.x==b.x) return a.y<b.y;
return a.x<b.x;
}
void pre(){
for(int i=;i<=n;i++)
for(int j=i;j<=n;j++)
dis[i][j]=dis[j][i]=sqrt((double)(v[i].x-v[j].x)*(v[i].x-v[j].x)+(v[i].y-v[j].y)*(v[i].y-v[j].y));
}
int main(){
while(scanf("%d",&n)!=EOF){
memset(dis,,sizeof(dis));
for(int i=;i<=n;i++)
scanf("%d%d",&v[i].x,&v[i].y);
sort(v+,v++n,cmp);
pre();
f[][]=f[][]=dis[][];
f[][]=*dis[][];
for(int i=;i<=n;i++){
for(int j=;j<i-;j++)
f[i][j]=f[j][i]=f[i-][j]+dis[i][i-];
f[i][i-]=f[i-][i]=f[i][i]=0x7f7f7f7f;
for(int j=;j<=i-;j++)
f[i-][i]=f[i][i-]=min(f[i][i-],f[j][i-]+dis[j][i]);
for(int j=;j<=i;j++)
f[i][i]=min(f[i][i],f[j][i]+dis[j][i]);
}
printf("%.2lf\n",f[n][n]);
}
}
 

HDU 2224 The shortest path的更多相关文章

  1. Hdu 4725 The Shortest Path in Nya Graph (spfa)

    题目链接: Hdu 4725 The Shortest Path in Nya Graph 题目描述: 有n个点,m条边,每经过路i需要wi元.并且每一个点都有自己所在的层.一个点都乡里的层需要花费c ...

  2. HDU 4725 The Shortest Path in Nya Graph [构造 + 最短路]

    HDU - 4725 The Shortest Path in Nya Graph http://acm.hdu.edu.cn/showproblem.php?pid=4725 This is a v ...

  3. HDU 4725 The Shortest Path in Nya Graph

    he Shortest Path in Nya Graph Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged o ...

  4. hdu 2807 The Shortest Path(矩阵+floyd)

    The Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. (中等) HDU 4725 The Shortest Path in Nya Graph,Dijkstra+加点。

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  6. HDU 4725 The Shortest Path in Nya Graph(构图)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. HDU 4725 The Shortest Path in Nya Graph (最短路)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  8. HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  9. hdu 4725 The Shortest Path in Nya Graph (最短路+建图)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

随机推荐

  1. nyoj--496--巡回赛(拓扑排序)

    巡回赛 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 世界拳击协会(WBA)是历史最悠久的世界性拳击组织,孕育了众多的世界冠军,尤其是重量级,几乎造就了大家耳熟能详的所 ...

  2. EOJ 1501/UVa The Blocks Problem

    Many areas of Computer Science use simple, abstract domains for both analytical and empirical studie ...

  3. .net MVC成长记录(二)

    今天上班的任务完成了,接下来写一下博客,巩固一下,再学习一些新知识. 闲话不多说,我们言归正传.昨天讲到了如何mvc框架在微软下,已经变成了一个非常灵活非常‘干净’的开发框架了, 同时也讲述了如何创建 ...

  4. Java数据类型转换1

    1 如何将字串 String 转换成整数 int? A. 有两个方法: 1). int i = Integer.parseInt([String]); 或 i = Integer.parseInt([ ...

  5. 网上找的JS截取字符串(含中文)

    <script> /* 2007-11-28 XuJian */ //截取字符串 包含中文处理 //(串,长度,增加...) function subString(str, len, ha ...

  6. AO如何获取SDE数据库中的数据

    /// <summary> /// 获取Table类型表的记录 /// </summary> /// <param name="relationCheckCla ...

  7. 九九乘法表(for循环)

    九九乘法表:<br /><script>for(var i=0;i<10;i++){ for(var j=1;j<=i;j++) { var a=j*i docum ...

  8. 相机标定:PNP基于单应面解决多点透视问题

              利用二维视野内的图像,求出三维图像在场景中的位姿,这是一个三维透视投影的反向求解问题.常用方法是PNP方法,需要已知三维点集的原始模型. 本文做了大量修改,如有不适,请移步原文:  ...

  9. (转)openlayers实现在线编辑

    http://blog.csdn.net/gisshixisheng/article/details/46054949 概述: 在前面有篇博文讲述了基于Arcgis for js和wkt实现在线数据的 ...

  10. iOS安全策略之HTTPS

    1.HTTPS传输流程 2.常用加密算法 3.AFN证书校验策略及核心方法 4.SSL Pinning 5.CA证书申请流程 HTTPS经由超文本传输协议进行通信,但利用SSL/TLS来对数据包进行加 ...