【BZOJ】【3171】【TJOI2013】循环格
网络流/费用流
最后能走回出发点……说明全部是环= =
而二分图上的环说明什么呢……完备匹配
对于每个点,它都有四个可能的匹配点,且已知它已经(伪)匹配的一个点,那么我们于已知每条(伪)匹配边,我们连(i,j)->(x,y)' 流量为1,费用为0,表示不用修改,然后对(x,y)'我们向另外三个可能的匹配点连边,流量为1,费用为1,表示修改这个点的匹配对象的代价。
然后对于每个点连S->(i,j) 流量为1,费用为0,(i,j)'->T,流量为1,费用为0。保证每个点有且仅有一个匹配点
/**************************************************************
Problem: 3171
User: Tunix
Language: C++
Result: Accepted
Time:28 ms
Memory:5968 kb
****************************************************************/ //BZOJ 3171
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
#define CC(a,b) memset(a,b,sizeof(a))
using namespace std;
int getint(){
int v=,sign=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') sign=-; ch=getchar();}
while(isdigit(ch)) {v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=,M=,INF=~0u>>;
const double eps=1e-;
/*******************template********************/
int n,m,ans,flow,tot;
inline int pack(int i,int j){
if (i==) i=n;
if (i==n+) i=;
if (j==) j=m;
if (j==m+) j=;
return (i-)*m+j;
}
struct edge{int from,to,v,c;};
struct Net{
edge E[M];
int head[N],next[M],cnt;
void ins(int x,int y,int z,int c){
E[++cnt]=(edge){x,y,z,c};
next[cnt]=head[x]; head[x]=cnt;
}
void add(int x,int y,int z,int c){
ins(x,y,z,c); ins(y,x,,-c);
}
int from[N],Q[M],d[N],S,T;
bool inq[N];
bool spfa(){
int l=,r=-;
F(i,,T) d[i]=INF;
Q[++r]=S; d[S]=; inq[S]=;
while(l<=r){
int x=Q[l++]; inq[x]=;
for(int i=head[x];i;i=next[i])
if(E[i].v && d[x]+E[i].c<d[E[i].to]){
d[E[i].to]=d[x]+E[i].c;
from[E[i].to]=i;
if(!inq[E[i].to]){
Q[++r]=E[i].to;
inq[E[i].to]=;
}
}
}
return d[T]!=INF;
}
void mcf(){
int x=INF;
for(int i=from[T];i;i=from[E[i].from])
x=min(x,E[i].v);
for(int i=from[T];i;i=from[E[i].from]){
E[i].v-=x;
E[i^].v+=x;
}
ans+=x*d[T];
}
void init(){
n=getint(); m=getint(); cnt=;
S=; T=*n*m+; tot=n*m;
char s[];
F(i,,n){
scanf("%s",s);
F(j,,m){
add(S,pack(i,j),,);
if (s[j-]=='U'){
add(pack(i,j),tot+pack(i-,j),,);
add(tot+pack(i-,j),tot+pack(i+,j),,);
add(tot+pack(i-,j),tot+pack(i,j-),,);
add(tot+pack(i-,j),tot+pack(i,j+),,);
}
if (s[j-]=='L'){
add(pack(i,j),tot+pack(i,j-),,);
add(tot+pack(i,j-),tot+pack(i,j+),,);
add(tot+pack(i,j-),tot+pack(i-,j),,);
add(tot+pack(i,j-),tot+pack(i+,j),,);
}
if (s[j-]=='D'){
add(pack(i,j),tot+pack(i+,j),,);
add(tot+pack(i+,j),tot+pack(i-,j),,);
add(tot+pack(i+,j),tot+pack(i,j+),,);
add(tot+pack(i+,j),tot+pack(i,j-),,);
}
if (s[j-]=='R'){
add(pack(i,j),tot+pack(i,j+),,);
add(tot+pack(i,j+),tot+pack(i,j-),,);
add(tot+pack(i,j+),tot+pack(i+,j),,);
add(tot+pack(i,j+),tot+pack(i-,j),,);
}
add(tot+pack(i,j),T,,);
}
}
while(spfa()) mcf();
printf("%d\n",ans);
}
}G1;
int main(){
#ifndef ONLINE_JUDGE
freopen("input.txt","r",stdin);
// freopen("output.txt","w",stdout);
#endif
G1.init();
return ;
}
3171: [Tjoi2013]循环格
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 600 Solved: 359
[Submit][Status][Discuss]
Description
,你可以沿着箭头防线在格子间行走。即如果(r,c)是一个左箭头,那么走到(r,c-1);如果是右箭头那么走到(r,c+1);如果是上箭头那么走到
(r-1,c);如果是下箭头那么走到(r+1,c);每一行和每一列都是循环的,即如果走出边界,你会出现在另一侧。
一个完美的循环格是这样定义的:对于任意一个起始位置,你都可以i沿着箭头最终回到起始位置。如果一个循环格不满足完美,你可以随意修改任意一个元素的箭头直到完美。给定一个循环格,你需要计算最少需要修改多少个元素使其完美。
Input
第一行两个整数R,C。表示行和列,接下来R行,每行C个字符LRUD,表示左右上下。
Output
一个整数,表示最少需要修改多少个元素使得给定的循环格完美
Sample Input
RRRD
URLL
LRRR
Sample Output
HINT
1<=R,L<=15
Source
【BZOJ】【3171】【TJOI2013】循环格的更多相关文章
- Bzoj 3171: [Tjoi2013]循环格 费用流
3171: [Tjoi2013]循环格 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 741 Solved: 463[Submit][Status][ ...
- BZOJ 3171 [Tjoi2013]循环格(费用流)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3171 [题目大意] 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子. 每 ...
- bzoj 3171: [Tjoi2013]循环格
#include<cstdio> #include<iostream> #include<cstring> #define M 10000 #define inf ...
- bzoj 3171: [Tjoi2013]循环格 最小费用最大流
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3171 题解: 首先我们很容易发现一个结论: 出现完美循环当且仅当所有点的出入度均为1 所 ...
- bzoj 3171 [Tjoi2013]循环格(MCMF)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3171 [题意] 给定一个方向矩阵,要求改变最少的格子,使得任意一个点都在一个环中. [ ...
- 3171. [TJOI2013]循环格【费用流】
Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头防线在格 ...
- [Tjoi2013]循环格
[Tjoi2013]循环格 2014年3月18日1,7500 Description Input 第一行两个整数R,C.表示行和列,接下来R行,每行C个字符LRUD,表示左右上下. Output 一个 ...
- 洛谷 P3965 [TJOI2013]循环格 解题报告
P3965 [TJOI2013]循环格 题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子. 每个元素有一个坐标(行,列),其中左上角元素坐标为\((0,0)\).给定一个起始位\ ...
- BZOJ_3171_[Tjoi2013]循环格_最小费用最大流
BZOJ_3171_[Tjoi2013]循环格_最小费用最大流 Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为 ...
- 【BZOJ 3171】 [Tjoi2013]循环格
Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头防线在格 ...
随机推荐
- 基于jQuery编写的横向自适应幻灯片切换特效
基于jQuery编写的横向自适应幻灯片切换特效 全屏自适应jquery焦点图切换特效,在IE6这个蛋疼的浏览器兼容性问题上得到了和谐,兼容IE6. 适用浏览器:IE6.IE7.IE8.360.Fire ...
- centos彻底删除mysql
yum remove mysql mysql-server mysql-libs compat-mysql51rm -rf /var/lib/mysqlrm /etc/my.cnf查看是否还有mysq ...
- RAC本地数据文件迁移至ASM的方法--非归档模式
系统环境:rhel6.2_x64+Oracle RAC11g 操作过程: 1.非归档模式 SQL> archive log list; Database log mode No Archive ...
- SPARK 数据统计程序性能优化。
昨天写完R脚本 没测试就发到博客里, 结果实际运行发现很慢,运行时间在2小时以上, 查看spark控制台, 大量时间消耗在count上, 产生的stage多大70多个 . 分析原因. 1 selec ...
- stm32f103 SPI单线TX发数据来驱动LCD
有一黑白LCD,有CS/SI/SCK三线,时序满足SPI时序,但STM32的SPI有四线NSS/MOSI/SCK/MISO,这里MISO没有用到.因此可以使用SPI的单线发送模式进行驱动LCD. 关键 ...
- 界面控件 - 滚动条ScrollBar
界面是人机交互的门户,对产品至关重要.在界面开发中只有想不到没有做不到的,有好的想法,当然要尝试着做出来.对滚动条的扩展,现在有很多类是的例子. VS2015的代码编辑是非常强大的,其中有一个功能可以 ...
- 从数组->ArrayList->List 为了方便与安全在不断变化着
在C#中,当我们想要存储一组对象的时候,就会想到用数组,ArrayList,List这三个对象了. 数组 优点优点之一:数组在内存中是连续存储的,所以它的索引速度是非常的快,而且赋值与修改元素也很简单 ...
- android asmack 注册 登陆 聊天 多人聊天室 文件传输
XMPP协议简介 XMPP协议(Extensible Messaging and PresenceProtocol,可扩展消息处理现场协议)是一种基于XML的协议,目的是为了解决及时通信标准而提出来的 ...
- Ubuntu无值守安装mysql
1. 使用apt-get -d install 命令下载安装包, 其中-d表示下载不安装. 下载后的deb包放在/var/cache/apt/archives目录 2. 使用dpkg-preconfi ...
- Go语言示例-函数返回多个值
Go语言中函数可以返回多个值,这和其它编程语言有很大的不同.对于有其它语言编程经验的人来说,最大的障碍不是学习这个特性,而是很难想到去使用这个特性. 简单如交换两个数值的例子: package mai ...