第k小,很容易会想到用主席树来解决

这里简单想一下树的转移过程

因为本身无向图形成一棵树,那么我们总以1为根,那么之后连下去的边对应的点建立的线段树总是在父亲节点对应的树上加上一个当前点对应位置出现的值

这跟在普通序列上由前一个转移到下一个是差不多的

那么每个点上生成的线段树记录的就是当前节点到根节点的总信息

然后每次询问求出2个点的公共祖先,那么找第k小,总是两个点的总前缀 减去一个 公共祖先的前缀和公共祖先父亲的前缀

那么询问的时候只要查询这四个点对应的线段树的值就可以了

 #include <bits/stdc++.h>

 using namespace std;
#define N 100010
#define lowbit(x) x&(-x)
#define define_m int m=(l+r)>>1
#define LS(x) node[x].ls
#define RS(x) node[x].rs
#define INIT(x) node[x].init()
#define SZ(x) node[x].sz int a[N] , val[N] , fa[N] , T[N];
int n , m , first[N] , k , curn;//curn表示离散化后还剩多少种数 //LCA所需
int dp[N<<][];
int id[N<<] , dep[N<<] , No[N] , dfs_clock; int HASH(int x){return lower_bound(a+ , a+curn+ , x)-a;} struct Node{
int ls , rs , sz;
void init(){ls=rs=sz=;}
}node[N*]; int tot;
int build(int l , int r)
{
int u=tot++;
INIT(u);
if(l!=r){
define_m;
LS(u) = build(l , m);
RS(u) = build(m+ , r);
}
return u;
} void build(int o1 , int o2 , int l , int r , int pos , int v)
{
if(l==r){
SZ(o2) = SZ(o1)+v;
return;
}
define_m;
INIT(tot);
if(m>=pos){
LS(o2) = tot++ , RS(o2) = RS(o1);
build(LS(o1) , LS(o2) , l , m , pos , v);
}else{
LS(o2) = LS(o1) , RS(o2) = tot++;
build(RS(o1) , RS(o2) , m+ , r , pos , v);
}
SZ(o2) = SZ(LS(o2)) + SZ(RS(o2));
} int query(int u , int v , int anc1 , int anc2 , int l , int r , int k)
{
if(l==r) return l;
define_m;
int c = SZ(LS(u))+SZ(LS(v))-SZ(LS(anc1))-SZ(LS(anc2));
if(c>=k) return query(LS(u) , LS(v) , LS(anc1) , LS(anc2) , l , m , k);
else return query(RS(u) , RS(v) , RS(anc1) , RS(anc2) , m+ , r , k-c);
} struct Edge{
int x , y , next;
Edge(){}
Edge(int x , int y , int next):x(x),y(y),next(next){}
}e[N<<]; void add_edge(int x , int y){
e[k] = Edge(x , y , first[x]);
first[x] = k++;
} void dfs(int u , int f , int d)
{
fa[u] = f , id[++dfs_clock] = u , No[u] = dfs_clock , dep[dfs_clock] = d;
INIT(tot);
T[u] = tot++;
build(T[f] , T[u] , , curn , HASH(val[u]) , );
for(int i=first[u] ; ~i ; i=e[i].next){
int v = e[i].y;
if(v == f) continue;
dfs(v , u ,d+);
id[++dfs_clock] = u , dep[dfs_clock] = d;
}
} void ST(int n){
for(int i= ; i<=n ; i++) dp[i][] = i;
for(int j= ; (<<j)<=n ; j++){
for(int i= ; i+(<<j)-<=n ; i++){
int a = dp[i][j-] , b=dp[i+(<<(j-))][j-];
dp[i][j] = dep[a]<dep[b]?a:b;
}
}
} int RMQ(int l , int r){
int k= ;
while((<<(k+))<=r-l+) k++;
int a = dp[l][k] , b=dp[r-(<<k)+][k];
return dep[a]<dep[b]?a:b;
} int LCA(int u , int v)
{
int x = No[u] , y = No[v];
if(x>y) swap(x , y);
return id[RMQ(x,y)];
} int main()
{
// freopen("in.txt" , "r" , stdin);
//freopen("out1.txt" , "w" , stdout);
while(~scanf("%d%d" , &n , &m)){
k = ;
memset(first , - , sizeof(first));
for(int i= ; i<=n ; i++){scanf("%d" , &val[i]);a[i]=val[i];}
sort(a+ , a+n+);
curn = unique(a+ , a+n+)-(a+);
// cout<<"check: "<<curn<<endl;
for(int i= ; i<n ; i++){
int x , y;
scanf("%d%d" , &x , &y);
add_edge(x , y);
add_edge(y , x);
}
dfs_clock = ;
tot=;
INIT(tot);
T[] = build( , curn);
dfs(,,);
ST(*n-);
while(m--){
int x , y , k;
scanf("%d%d%d" , &x , &y , &k);
int anc = LCA(x , y);
int index = query(T[x] , T[y] , T[anc] , T[fa[anc]] , , curn , k);
printf("%d\n" , a[index]);
}
}
return ;
}

SPOJ 10628 求树上的某条路径上第k小的点的更多相关文章

  1. 在加权无向图上求出一条从1号结点到N号结点的路径,使路径上第K+1大的边权尽量小

    二分+最短路算法 #include<cstdio> #include<iostream> #include<cstring> #include<algorit ...

  2. binary-tree-maximum-path-sum——二叉树任意一条路径上的最大值

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  3. Ping pong(树状数组求序列中比某个位置上的数小的数字个数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2492 Ping pong Time Limit: 2000/1000 MS (Java/Others) ...

  4. Count on a tree(树上路径第K小)

    题目链接:https://www.spoj.com/problems/COT/en/ 题意:求树上A,B两点路径上第K小的数 思路:主席树实际上是维护的一个前缀和,而前缀和不一定要出现在一个线性表上. ...

  5. SPOJ-COT-Count on a tree(树上路径第K小,可持久化线段树)

    题意: 求树上A,B两点路径上第K小的数 分析: 同样是可持久化线段树,只是这一次我们用它来维护树上的信息. 我们之前已经知道,可持久化线段树实际上是维护的一个前缀和,而前缀和不一定要出现在一个线性表 ...

  6. 树上第k小,可持久化线段树+倍增lca

    给定一颗树,树的每个结点都有权值, 有q个询问,每个询问是 u v k ,表示u到v路径上第k小的权值是多少. 每个结点所表示的线段树,是父亲结点的线段树添加该结点的权值之后形成的新的线段树 c[ro ...

  7. BZOJ 2588: Spoj 10628. Count on a tree( LCA + 主席树 )

    Orz..跑得还挺快的#10 自从会树链剖分后LCA就没写过倍增了... 这道题用可持久化线段树..点x的线段树表示ROOT到x的这条路径上的权值线段树 ----------------------- ...

  8. Key Vertex (hdu 3313 SPFA+DFS 求起点到终点路径上的割点)

    Key Vertex Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tota ...

  9. 牛客小白月赛6 C 桃花 dfs 求树上最长直径

    链接:https://www.nowcoder.com/acm/contest/136/C来源:牛客网 题目描述 桃花一簇开无主,可爱深红映浅红.                            ...

随机推荐

  1. java技术知识点

    1   自我介绍 2  做过的项目 (Java 基础) 3  Java的四个基本特性(抽象.封装.继承,多态),对多态的理解(多态的实现方式)以及在项目中那些地方用到多态 Java的四个基本特性 ◦  ...

  2. SDL2.0的VS开发环境搭建

    SDL2.0的VS开发环境搭建 [前言] 我是用的是VS2012,VS的版本应该大致一样. [开发环境搭建] >>>SDL2.0开发环境配置:1.从www.libsdl.org 下载 ...

  3. org.apache.hadoop.hbase.TableExistsException: hbase:namespace

    Problem is here : https://community.cloudera.com/t5/Storage-Random-Access-HDFS/HMaster-not-starting- ...

  4. 开机使用root用户登录

    有的fedora版本默认不支持开机以root用户登录,这是出于安全机制的考虑,可以通过设置实现开机root用户登录 步骤: 1.修改.etc/pam.d/gdm文件,注释掉auth  pam_succ ...

  5. SwitchCompat 修改颜色

    Ok, so I'm sorry but most of these answers are incomplete or have some minor bug in them. The very c ...

  6. VI经典插件ctags

    Vi经典插件ctags(转) (为了提高工作效率,必须学会使用一些工具) . 查看 key 相关信息说明的命令 :help keycodes ============================= ...

  7. Nodejs环境变量

    PATH,就是那个意思,没有特殊含义. NODE_PATH,将node_modules作为全局模块,多个安装目录用;分开.这样node在加载模块时首先会到项目目录下的node_modules目录加载相 ...

  8. 垂直居中,水平居中html例子

    <!DOCTYPE html> <html lang="en"> <head> <title>Vertical Centering ...

  9. javascript图片切换

    JavaScript 图片滑动切换效果 作者:cloudgamer 时间: 2009-09-25 文档类型:原创 来自:蓝色理想 第 1 页 JavaScript 图片滑动切换效果 [1] 第 2 页 ...

  10. jmeter 建立一个网络服务的测试计划

    如何创建一个 测试计划 测试一个网络服务. 你会 创建5个用户发送请求到一页. 同时,你会告诉用户运行测试两次. 的总数 请求用户请求(5)x(1)x(重复2次)= 10 HTTP请求. 来 建立测试 ...