lintcode:逆序对
题目
在数组中的两个数字如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。给你一个数组,求出这个数组中逆序对的总数。
概括:如果a[i] > a[j] 且 i < j, a[i] 和 a[j] 构成一个逆序对。
序列 [2, 4, 1, 3, 5] 中,有 3 个逆序对 (2, 1), (4, 1), (4, 3),则返回 3 。
解题
直接暴力找,时间复杂度O(n^2)
public class Solution {
/**
* @param A an array
* @return total of reverse pairs
*/
public long reversePairs(int[] A) {
// Write your code here
long res = 0;
int n = A.length;
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
if(A[i] >A[j]){
res ++;
}
}
}
return res;
}
}
归并排序的思想
对于数组A[p,...,q]
分成两个数组A[p,...,r],A[r+1,...,q]
当这两个数组都是有序的时候,其逆序对数很好求
可以两个指针i,j分布指向数组的尾部
当A[i]>A[j]时候一定是逆序对,注意是有序的,逆序对数量:j-(r+1) +1 = j-r
else 不是逆序对
程序
public class Solution {
/**
* @param A an array
* @return total of reverse pairs
*/
long res = 0;
public long reversePairs(int[] A) {
// Write your code here
int n = A.length;
reversP(A,0,n-1);
return res;
}
public void reversP(int[] A,int low,int high){
if(low>=high)
return;
int mid = low + (high - low)/2;
reversP(A,low,mid);
reversP(A,mid+1,high);
merge(A,low,mid,high);
}
public void merge(int[] A,int low ,int mid ,int high){
int len = high - low + 1;
int[] C = new int[len]; // 临时存放中间归并数组
int i = mid;
int j = high;
int k = len -1;
while(i>= low && j>=mid+1){
if(A[i] > A[j]){
C[k--] = A[i];
i--;
res += j - (mid + 1) +1; // 逆序对数量
}else{
C[k--] = A[j];
j--;
}
}
while(i>=low){
C[k--] = A[i];
i--;
}
while(j>=mid+1){
C[k--] = A[j];
j--;
}
for(k=0;k<len;k++){
A[k+low] = C[k];
}
}
public void print(int[] A){
for(int a:A){
System.out.print(a+"\t");
}
System.out.println();
}
}
分析下输出过程
测试样例:[2,4,1,3,5]
5个元素划分的区间
元素下标上界是4
[0,4]划分[0,2]、[3,4]
---[0,2]划分:[0,1]、[2]
-------[0,1]划分:[0]、[1]
---[3,4]划分:[3]、[4]
输出情况
2 4 1 3 5 最底层只有一个元素
1 2 4 3 5 [0,2]合并
1 2 4 3 5
1 2 3 4 5 [0,4]合并
算法可行性
一个数组分成B、C两部分,B、C两部分分布升序排序
对于A[i] 在B中,A[j]在C中的情况,关于A[i]与A[j]的逆序对数量与B中A[i]的位置、C中A[j]的位置无关,这个很显然
程序开始的时候找到是1个元素,后来合并成两个元素的数组,这样慢慢的合并,并计算逆序对的数量,最后就得到答案了
lintcode:逆序对的更多相关文章
- 【CQOI2011】动态逆序对 BZOJ3295
Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...
- CH Round #72 奇数码问题[逆序对 观察]
描述 你一定玩过八数码游戏,它实际上是在一个3*3的网格中进行的,1个空格和1~8这8个数字恰好不重不漏地分布在这3*3的网格中. 例如:5 2 81 3 _4 6 7 在游戏过程中,可以把空格与其上 ...
- POJ3928Ping pong[树状数组 仿逆序对]
Ping pong Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3109 Accepted: 1148 Descrip ...
- NOIP2013火柴排队[逆序对]
题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...
- bzoj 3295 动态逆序对 CDQ分支
容易看出ans[i]=ans[i-1]-q[i],q[i]为删去第i个数减少的逆序对. 先用树状数组算出最开始的逆序对,预处理出每个数前边比它大的和后边比它小的,就求出了q[i]的初始值. 设b[i] ...
- 诸城模拟赛 dvd的逆序对
[题目描述] dvd是一个爱序列的孩子. 他对序列的热爱以至于他每天都在和序列度过 但是有一个问题他却一直没能解决 给你n,k求1~n有多少排列有恰好k个逆序对 [输入格式] 一行两个整数n,k [输 ...
- 归并求逆序数(逆序对数) && 线段树求逆序数
Brainman Time Limit: 1000 MS Memory Limit: 30000 KB 64-bit integer IO format: %I64d , %I64u Java c ...
- BZOJ 3295: [Cqoi2011]动态逆序对
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3865 Solved: 1298[Submit][Sta ...
- BZOJ 3295 【Cqoi2011】 动态逆序对
Description 对于序列\(A\),它的逆序对数定义为满足\(i<j\),且\(A_i>A_j\)的数对\((i,j)\)的个数.给\(1\)到\(n\)的一个排列,按照某种顺序依 ...
随机推荐
- iOS学习之C语言循环结构
一.while循环 while (循环条件) { 循环体: } // 1.定义循环变量 int time = 1; // 2.循环条件 while ( ...
- Block 块
代码块本质上是和其他变量类似.不同的是,代码块存储的数据是一个函数体.使用代码块是,你可以像调用其他标准函数一样,传入参数数,并得到返回值. 脱字符(^)是块的语法标记.按照我们熟悉的参数语法规约所定 ...
- C# 执行Cmd窗口中的命令 [复制文件实例]
/// <summary> /// 复制文件夹 /// </summary> /// <param name="sCmd"></param ...
- DSP28335的SPI发送
#include "DSP2833x_Device.h"#include "DSP2833x_Examples.h"unsigned char table[]= ...
- [shell练习]——awk练习题
1. sed和awk有什么区别? (1)awk:按列(域)操作:sed:按行操作(2)awk:文本处理语言,适合对文本进行抽取处理:sed:非交互式的编辑器,适合对文本进行编辑 2. awk要处理域的 ...
- [SSH服务]——一个SSH无密码登陆实验
实验拓扑图 实验描述 机房内有两台服务器: (1)B服务器10.0.10.158,充当Web服务器,有普通用户user_00 (2)C服务器10.0.10.191,充当Mysql服务器,有普通用户us ...
- UITableView设置cell为不可选?
本文选自StackOverflow(简称:SOF)精选问答汇总系列文章之一,本系列文章将为读者分享国外最优质的精彩问与答,供读者学习和了解国外最新技术.本文将为读者讲解UITableView如何设置单 ...
- Week8 软件规格说明书
1.概述 本项目组所开发的软件为一个基于Android的手机端的时间管理软件,主要功能为时间管理软件,可以用于管理待办事项,记录一些需要提醒的信息等.有事件提醒.与Google账户同步.课程表等功能. ...
- Bootstrap入门五:表格
table样式: .table:表格基本样式,很少的padding,灰色的细水平分隔线. .table-striped:斑马纹样式,隔行换色. .table-bordered:为表格和其中的每个单元格 ...
- linux内核分析之fork()
从一个比较有意思的题开始说起,最近要找工作无意间看到一个关于unix/linux中fork()的面试题: #include<sys/types.h> #include<stdio.h ...