题意:

N头牛站成一条线,分别朝向前后两个方向,机器可以使连续K头牛同时改变方向,要求所有牛最终朝向前方,问机器操作次数的最小值及此时的最小K值。

分析:

第一眼看感觉是二分搜索K,再仔细读题,

please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward.

是在最小操作的基础上的最小K值,而操作数可达2N个,肯定不能搜索状态了,可以对K进行枚举,算出每次的操作数,进行比较。

直接暴力的话时间复杂度O(n3)过不了,必须进行优化,尽量扫描一遍就获得操作数。

因为是K个连续的一起转,即第i到i+k−1号牛要一起转,由于这次转动是由第i号牛引起的,就把这次转动体现在a[i]上,令a[i]=1,那么在遍历到第i+k−1号牛之前,i+k−1号牛所转动的次数就是∑i+k−2ia[i],遍历到第i+k−1号牛时,根据求出的转动次数及他本身的方向,判断是否需要转动,依次处理下去。最后判断剩余k−1头牛是否全部面向前方。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<map>
using namespace std;
const int maxn = 5005, INF =0x3fffffff;
int s[maxn],a[maxn];
int N;
int judge(int k)
{
memset(a, 0, sizeof(a));
int cnt = 0;
int sum = 0;
for(int i = 0; i < N - k + 1; i++){
if((s[i] + sum) % 2 == 1){
a[i] = 1;
cnt++;
}
sum += a[i];
if(i-k+1>=0) sum -= a[i-k+1];
}
for(int i = N - k +1; i < N; i++){
if((s[i] + sum) % 2 == 1){
return -1;
}
if(i-k+1>=0) sum -= a[i-k+1];
}
return cnt;
}
int main (void)
{
map<char,int>m;
m.insert(make_pair('B',1));
m.insert(make_pair('F',0));
scanf("%d", &N);
char c;
for(int i = 0; i < N;i++){
getchar();
c = getchar();
s[i] = m[c];
}
int res = INF, k;
for(int i = 1; i <= N;i++){
int ans = judge(i);
if(ans == -1) continue;
else if(ans < res){
res = ans;
k = i;
}
}
printf("%d %d\n", k, res);
}

POJ 3276 Face The Right Way【枚举】的更多相关文章

  1. 反转(开关问题) POJ 3276

    POJ 3276 题意:n头牛站成线,有朝前有朝后的的,然后每次可以选择大小为k的区间里的牛全部转向,会有一个最小操作m次使得它们全部面朝前方.问:求最小操作m,再此基础上求k. 题解:1.5000头 ...

  2. POJ.3279 Fliptile (搜索+二进制枚举+开关问题)

    POJ.3279 Fliptile (搜索+二进制枚举+开关问题) 题意分析 题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置( ...

  3. POJ 3276 枚举+差分?

    题意: 思路: 先枚举一下k 贪心:如果当前是B那么就翻 差分一下序列 mod2 就OK了 //By SiriusRen #include <cstdio> #include <cs ...

  4. POJ 3276 (开关问题)

    题目链接: http://poj.org/problem?id=3276 题目大意:有一些牛,头要么朝前要么朝后,现在要求确定一个连续反转牛头的区间K,使得所有牛都朝前,且反转次数m尽可能小. 解题思 ...

  5. Poj(3522),UVa(1395),枚举生成树

    题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submis ...

  6. poj 3740 Easy Finding 二进制压缩枚举dfs 与 DLX模板详细解析

    题目链接:http://poj.org/problem?id=3740 题意: 是否从0,1矩阵中选出若干行,使得新的矩阵每一列有且仅有一个1? 原矩阵N*M $ 1<= N <= 16 ...

  7. POJ 1753 Flip Game(二进制枚举)

    题目地址链接:http://poj.org/problem?id=1753 题目大意: 有4*4的正方形,每个格子要么是黑色,要么是白色,当把一个格子的颜色改变(黑->白或者白->黑)时, ...

  8. POJ 3279 - Fliptile - [状压+暴力枚举]

    题目链接:http://poj.org/problem?id=3279 Sample Input 4 4 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 Sample Output 0 ...

  9. POJ 3977:Subset(折半枚举+二分)

    [题目链接] http://poj.org/problem?id=3977 [题目大意] 在n个数(n<36)中选取一些数,使得其和的绝对值最小. [题解] 因为枚举所有数选或者不选,复杂度太高 ...

随机推荐

  1. node.js学习笔记(1)

    一.     安装以及环境配置 安装路径 http://nodejs.cn/download/ 多种环境选择 环境变量的配置 Step1 先检查环境变量中的系统变量里面的path,查看是否加入了nod ...

  2. iOS-控件响应用户控制事件之事件处理

    事件处理 响应者对象 在iOS中不是任何对象都能处理事件,只有继承了UIResponder的对象才能接收并处理事件.我们称之为“响应者对象” UIApplication.UIViewControlle ...

  3. reStructuredText学习

    reStructuredText学习====================2015年4月1日 学习的最好方法就是尽快动手开始.不断迭代,不断完善. reStructuredText学习v0.1版本. ...

  4. 解决国内无法安装android sdk的问题

    在使用 Android SDK Manager 的时候,主要会连接到两个地址 dl.google.com 和 dl-ssl.google.com,key发现这两个地址都是无法正常访问的,如何解决呢? ...

  5. java 文件另存为

    FileUtils.copyFile(new File(), new File());

  6. Flask框架 之模版

    一.过滤器 safe:禁用转义: <p>{{ '<em>hello</em>' | safe }}</p> capitalize:把变量值的首字母转成大 ...

  7. ARP是如何工作的?

    我们知道,当我们在浏览器里面输入网址时,DNS服务器会自动把它解析为IP地址,浏览器实际上查找的是IP地址而不是网址.那么IP地址是如何转换为第二层物理地址(即MAC地址)的呢? 在局域网中,这是通过 ...

  8. 梦想CAD控件,用于浏览和编辑DWG文件,在脱离AUTOCAD的情况下独立运行,相当于简易CAD

    (百度百科连接) 梦想绘图控件5.2  是国内最强,最专业的CAD开发组件(控件),不需要AutoCAD就能独立运行.控件使用VC 2010开发,最早从2007年第一个版本完成,经过多年的累积已经非常 ...

  9. What is state and props

    State, in React component, is internal dataset which affects the rendering of the component. To some ...

  10. js文字内容部分选中的代码封装

    var textSelect = function(o, a, b){ //o是当前对象,例如文本域对象 //a是起始位置,b是终点位置 var a = parseInt(a, 10), b = pa ...