[Bzoj3677][Apio2014]连珠线(树形dp)
3677: [Apio2014]连珠线
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 434 Solved: 270
[Submit][Status][Discuss]
Description
在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”。不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色和蓝色。游戏
开始时,只有1个珠子,而接下来新的珠子只能通过线由以下两种方式被加入:
1.Append(w,杪):-个新的珠子w和一个已有的珠子杪连接,连接使用红线。
2.Insert(w,u,v):-个新的珠子w加入到一对通过红线连接的珠子(u,杪)
之间,并将红线改成蓝线。也就是将原来u连到1的红线变为u连到w的蓝线与W连到V的蓝线。
无论红线还是蓝线,每条线都有一个长度。而在游戏的最后,将得到游戏的
最后得分:所有蓝线的长度总和。
现在有一个这个游戏的最终结构:你将获取到所有珠子之间的连接情况和所
有连线的长度,但是你并不知道每条线的颜色是什么。
你现在需要找到这个结构下的最大得分,也就是说:你需要给每条线一个颜
色f红色或蓝色),使得这种连线的配色方案是可以通过上述提到的两种连线方式
操作得到的,并且游戏得分最大。在本题中你只需要输出最大的得分即可。
Input
第一行是一个正整数n,表示珠子的个数,珠子编号为1刭n。
接下来n-l行,每行三个正整数ai,bi(l≤ai10000),表示有一条长度为ci的线连接了珠子ai和珠子bi。
Output
输出一个整数,为游戏的最大得分。
Sample Input
Sample Output
HINT
数据范围满足1≤n≤200000。
分析:
一开始以为定义状态f[i][0/1]表示第i个点是不是中心点乱树形dp就可以了,结果考完只有10分
AC代码:
# include <iostream>
# include <cstdio>
using namespace std;
const int N = 3e5 + ;
const int inf = 0x3f3f3f3f;
int head[N],dt,n,ans,f1[N],f2[N],g[N];
struct Edge{
int to,nex,w;
}edge[N << ];
void AddEdge(int u,int v,int w)
{
edge[++dt] = (Edge){v,head[u],w};
head[u] = dt;
}
void dfs(int u,int pre)
{
f1[u] = f2[u] = -inf;int t;
for(int i = head[u];i;i = edge[i].nex)
{
if(edge[i].to == pre)continue;
dfs(edge[i].to,u);
t = g[edge[i].to] + edge[i].w - max(g[edge[i].to],g[edge[i].to] + f1[edge[i].to] + edge[i].w);
if(t > f1[u])f2[u] = f1[u],f1[u] = t;
else if(t > f2[u])f2[u] = t;
g[u] += max(g[edge[i].to],g[edge[i].to] + f1[edge[i].to] + edge[i].w);
}
}
void Dfs(int u,int pre)
{
ans = max(ans,g[u]);int s,t,c;
for(int i = head[u];i;i = edge[i].nex)
{
if(edge[i].to == pre)continue;
s = g[u] - max(g[edge[i].to],g[edge[i].to] + f1[edge[i].to] + edge[i].w);
t = g[edge[i].to] + edge[i].w - max(g[edge[i].to],g[edge[i].to] + f1[edge[i].to] + edge[i].w);
if(f1[u] == t)c = f2[u];else c = f1[u];
g[edge[i].to] += max(s,s + c + edge[i].w);
t = s + edge[i].w - max(s,s + c + edge[i].w);
if(t > f1[edge[i].to])f2[edge[i].to] = f1[edge[i].to],f1[edge[i].to] = t;
else if(t > f2[edge[i].to])f2[edge[i].to] = t;
Dfs(edge[i].to,u);
}
}
int main()
{
freopen("beads.in","r",stdin);
freopen("beads.out","w",stdout);
scanf("%d",&n);int x,y,z;
for(int i = ;i < n;i++)
{
scanf("%d %d %d",&x,&y,&z);
AddEdge(x,y,z);AddEdge(y,x,z);
}
dfs(,-);Dfs(,-);
printf("%d\n",ans);
fclose(stdin);
fclose(stdout);
return ;
}
[Bzoj3677][Apio2014]连珠线(树形dp)的更多相关文章
- bzoj3677: [Apio2014]连珠线
Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色和蓝色.游戏 开始时,只有1个珠子,而接下来新的 ...
- 【BZOJ3677】[Apio2014]连珠线 换根DP
[BZOJ3677][Apio2014]连珠线 Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色 ...
- 题解 [APIO2014]连珠线
题解 [APIO2014]连珠线 题面 解析 首先这连成的是一棵树啊. 并且\(yy\)一下,如果钦定一个根, 那么这上面的蓝线都是爸爸->儿子->孙子这样的,因为像下图这样的构造不出来: ...
- 【LG3647】[APIO2014]连珠线
[LG3647][APIO2014]连珠线 题面 洛谷 题解 首先考虑一下蓝线连起来的情况,一定是儿子-父亲-另一个儿子或者是儿子-父亲-父亲的父亲. 而因为一开始只有一个点在当前局面上,将一条红边变 ...
- bzoj 3677: [Apio2014]连珠线【树形dp】
参考:http://www.cnblogs.com/mmlz/p/4456547.html 枚举根,然后做树形dp,设f[i][1]为i是蓝线中点(蓝线一定是父子孙三代),f[i][0]为不是,转移很 ...
- 洛谷 P3647 [APIO2014]连珠线(换根 dp)
题面传送门 题意: 桌子上有 \(1\) 个珠子,你要进行 \(n-1\) 次操作,每次操作有以下两种类型: 拿出一个新珠子,并选择一个桌子上的珠子,在它们之间连一条红线 选择两个由红线相连的珠子 \ ...
- APIO2014 连珠线
题目链接:戳我 换根DP 由于蒟蒻不会做这个题,所以参考了大佬. 本来想的是有三种情况,一种是该节点不作为两个蓝线的中点(我们称这种不是关键节点),一种是该节点作为关键点.连两个子节点,一种是作为关键 ...
- 洛谷$P3647\ [APIO2014]$连珠线 换根$dp$
正解:换根$dp$ 解题报告: 传送门! 谁能想到$9102$年了$gql$居然还没写过换根$dp$呢,,,$/kel$ 考虑固定了从哪个点开始之后,以这个点作为根,蓝线只可能是直上直下的,形如&qu ...
- 并不对劲的bzoj3677:p3647:[APIO2014]连珠线
题目大意 有一种生成\(n\)个点的树的方法为: 一开始有一个点,\(n-1\)次操作,每次可以有两种操作:1.选一个点,用一条红边将它与新点连接:2.将新点放在一条红边上,新点与这条红边两端点直接的 ...
随机推荐
- java在线聊天项目0.9版 实现把服务端接收到的信息返回给每一个客户端窗口中显示功能之客户端接收
客户端要不断接收服务端发来的信息 与服务端不断接收客户端发来信息相同,使用线程的方法,在线程中循环接收 客户端修改后代码如下: package com.swift; import java.awt.B ...
- UVa 167(八皇后)、POJ2258 The Settlers of Catan——记两个简单回溯搜索
UVa 167 题意:八行八列的棋盘每行每列都要有一个皇后,每个对角线上最多放一个皇后,让你放八个,使摆放位置上的数字加起来最大. 参考:https://blog.csdn.net/xiaoxiede ...
- verilog behavioral modeling --loop statement
1.forever 2.repeat 3.while 4.for The for statement accomplishes the same results as the following ps ...
- 【http】【转发】HTTP访问控制(CORS)
当一个资源从与该资源本身所在的服务器不同的域或端口请求一个资源时,资源会发起一个跨域 HTTP 请求. 比如,站点 http://domain-a.com 的某 HTML 页面通过 <img ...
- appIcon
原文地址:https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/IconM ...
- hdu 5437
Alisha’s Party Time Limit: 3000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) ...
- JavaScript正则表达式-断言
(?=reg_pattern):正前向断言 只有当字符串右侧出现匹配reg_pattern的字符时才匹配正则表达式. str = "img1.jpg,img2.jpg,img3.bmp&qu ...
- IOS 自动布局-UIStackPanel和UIGridPanel(一)
我以前是做windows phone开发的,后来转做IOS的开发,因此很多windows phone上面的开发经验也被我带到了IOS中.其实有些经验本身跟平台无关,跟平台有关的无非就是实现方法而已.好 ...
- appium+python自动化-adb文件导入和导出(pull push)
前言 用手机连电脑的时候,有时候需要把手机(模拟器)上的文件导出到电脑上,或者把电脑的图片导入手机里做测试用,我们可以用第三方的软件管理工具直接复制粘贴,也可以直接通过adb命令导入和导出. adb ...
- Get 了滤镜、动画、AR 特效,速来炫出你的短视频开发特技!
在滤镜美颜.搞怪特效.炫酷场景等各种新奇玩法驱动下,短视频开始让人上瘾. 12 月 3 日,七牛云联合八大短视频特效平台共同推出了中国短视频开发者创意大赛(China Short Video Cont ...