Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).



The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12

Note:

  • You may assume that the matrix does not change.
  • There are many calls to sumRegion function.
  • You may assume that row1 ≤ row2 and col1 ≤ col2.
class NumMatrix {// 题意没太看懂
private:
vector<vector<int>> sum;
public:
NumMatrix(vector<vector<int>> matrix) {
int row=matrix.size(), col=row==0?0:matrix[0].size();
sum=vector<vector<int>>(row+1,vector<int>(col+1,0));
for(int i=1; i<=row; i++)
for(int j=1; j<=col; j++)
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+matrix[i-1][j-1];
} int sumRegion(int row1, int col1, int row2, int col2) {
return sum[row2+1][col2+1]-sum[row1][col2+1]-sum[row2+1][col1]+sum[row1][col1];
}
}; /**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix obj = new NumMatrix(matrix);
* int param_1 = obj.sumRegion(row1,col1,row2,col2);
*/

LeetCode 304. Range Sum Query 2D – Immutable的更多相关文章

  1. [LeetCode] 304. Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  2. [leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  3. leetcode 304. Range Sum Query 2D - Immutable(递推)

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  4. LeetCode 304. Range Sum Query 2D - Immutable 二维区域和检索 - 矩阵不可变(C++/Java)

    题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...

  5. 【刷题-LeetCode】304. Range Sum Query 2D - Immutable

    Range Sum Query 2D - Immutable Given a 2D matrix matrix, find the sum of the elements inside the rec ...

  6. 【LeetCode】304. Range Sum Query 2D - Immutable 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 预先求和 相似题目 参考资料 日期 题目地址:htt ...

  7. 304. Range Sum Query 2D - Immutable

    题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...

  8. 304. Range Sum Query 2D - Immutable(动态规划)

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  9. 304 Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2). 上图子矩阵左上角 (row1, col1) = (2, 1) ,右 ...

随机推荐

  1. linux添加开机启动脚本

    [root@mysql ~]# ll /etc/rc.local lrwxrwxrwx. 1 root root 13 Mar 12 22:20 /etc/rc.local -> rc.d/rc ...

  2. CentOS下查看网络状态

    查看网络状态:lsof -Pnl +M -i4 显示ipv4服务及监听端情况netstat -anp 所有监听端口及对应的进程netstat -tlnp 功能同上 网络基本命令 (1)network ...

  3. 牛客国庆集训派对Day_1~3

    Day_1 A.Tobaku Mokushiroku Kaiji 题目描述 Kaiji正在与另外一人玩石头剪刀布.双方各有一些代表石头.剪刀.布的卡牌,每局两人各出一张卡牌,根据卡牌的内容决定这一局的 ...

  4. windows session 管理

    Killing an Oracle process from inside Oracle I had a following situation few days ago – I was runnin ...

  5. python函数基础(3)

    第1章 编码补充 1.1 字符编码对照表 1.2 编码特性 1.4 encode/decode第2章 集合 2.1 特点 2.2 [重点]作用:去重 2.3 常用操作 2.3.1 删除 2.3.2 交 ...

  6. 用PDFMiner从PDF中提取文本文字

    1.下载并安装PDFMiner 从https://pypi.python.org/pypi/pdfminer/下载PDFMineer wget https://pypi.python.org/pack ...

  7. MongoDB学习笔记~监控Http请求的消息链

    在微服务架构里,你的一个任务可以需要经过多次中转,去多个接口获取数据,而在这个过程中,出现问题后的解决就成了一个大难点,你无法定位它的问题,这时,大叔的分布式消息树就出现了,费话不多说,主要看一下实现 ...

  8. Android开发-浅谈架构(一)

    写在前面的话 嗯 聊聊架构. 这段时间一直在维护旧项目. 包括自己之前写的新项目 越来越发现 一个架构清晰的项目往往让人赏心悦目.不至于在一个bug丢过来之后手足无措.包括以后别人接收自己的项目 能很 ...

  9. [转]IntelliJ IDEA 自定义方法注解模板

    IntelliJ IDEA 自定义方法注解模板 置顶2017年08月02日 18:04:36 阅读数:32592 最近没啥事开始正式用Eclipse 转入 idea工具阵营,毕竟有70%的开发者在使用 ...

  10. EMAC IP 核

    在有线连接的世界里,以太网(Ethernet)无所不在.以太网具有各种速度模式.接口方式.以及灵活的配置方式.现在的以太网卡都是10/100/1000Mbps自适应网卡.以太网的物理层(PHY)通常使 ...