zoj 2587 Unique Attack【最小割】
拆点拆魔怔了
直接按照原图建就行,这里有个小技巧就是双向边的话不用按着板子建(u,v,c)(v,u,0)(v,u,c)(u,v,0),直接建(u,v,c)(v,u,c)会快十倍!800ms->80ms,建完之后跑一遍dinic,然后从s顺着有残余流量的正向边dfs打标记fr并且计数ss,从t顺着正向边有残余流量的反向边dfs打标记to并且计数st,最后如果st+ss==n则是惟一的,否则不是,因为最大流后,割边一定满流。
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int N=805,inf=1e9,L=2005;
int n,m,h[N],cnt=1,le[N],s,t,ss,st;
bool fr[N],to[N];
struct qwe
{
int ne,no,to,v;
}e[N*N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].v=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].v>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||!f)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(le[e[i].to]==le[u]+1&&e[i].v>0)
{
int d=dfs(e[i].to,min(e[i].v,f-us));
e[i].v-=d;
e[i^1].v+=d;
us+=d;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
void dfs1(int u)
{
fr[u]=1;ss++;
for(int i=h[u];i;i=e[i].ne)
if(!fr[e[i].to]&&e[i].v!=0)
dfs1(e[i].to);
}
void dfs2(int u)
{
to[u]=1;st++;
for(int i=h[u];i;i=e[i].ne)
if(!to[e[i].to]&&e[i^1].v!=0)
dfs2(e[i].to);
}
int main()
{
while(1)
{
memset(h,0,sizeof(h));
memset(fr,0,sizeof(fr));
memset(to,0,sizeof(to));
cnt=1;ss=0,st=0;
n=read(),m=read();s=read(),t=read();
if(n==0)
break;
for(int i=1;i<=m;i++)
{
int x=read(),y=read(),z=read();
add(x,y,z);
add(y,x,z);
}
dinic();
dfs1(s);
dfs2(t);
if(ss+st==n)
puts("UNIQUE");
else
puts("AMBIGUOUS");
}
return 0;
}
zoj 2587 Unique Attack【最小割】的更多相关文章
- zoj 2587 Unique Attack 最小割判定
题目链接 让你判断最小割是否唯一. 判断方法是, 先求一遍最大流, 然后从源点dfs一次, 搜索未饱和边的数目. 从汇点dfs一次, 同样也是搜索未饱和边的数目, 看总和是否等于n. 如果等于n那么唯 ...
- ZOJ 2587 Unique Attack (最小割唯一性)
题意 判断一个无向图的割是否唯一 思路 错误思路:一开始想的是判断割边是否都是关键割边,那既然割边两端点能连通S.T点的边是关键边,那么只要遇到有某个边两端点不连通S or T则这条边就不是关键割边( ...
- ZOJ 2587 Unique Attack(最小割唯一性判断)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2587 题意:判断最小割是否唯一. 思路: 最小割唯一性的判断是先跑一遍最大 ...
- ZOJ - 2587 Unique Attack (判断最小割是否唯一)
题意:判断最小割是否唯一. 分析:跑出最大流后,在残余网上从源点和汇点分别dfs一次,对访问的点都打上标记. 若还有点没有被访问到,说明最小割不唯一. https://www.cnblogs.com/ ...
- ZOJ-2587-Unique Attack(最小割的唯一性)
题意: 求无向图最小割是否唯一 分析: 1.我们先对原图求一次最大流 2.对残留网络,我们从S开始,找到所有所有S能到达的点:再从T开始,找出所有能到达T的点. 3.判断原网络中是否还有没有访问到的点 ...
- ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)
[题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...
- ZOJ 3792 Romantic Value 最小割(最小费用下最小边数)
求最小割及最小花费 把边权c = c*10000+1 然后跑一个最小割,则flow / 10000就是费用 flow%10000就是边数. 且是边数最少的情况.. #include<stdio. ...
- zoj 2532 Internship【最小割】
就是求哪些边在最大流上满流,也就是找割边.把0作为t点,s向所有的1~n连流量为inf的边,其他的边按照流量连.跑一遍最大流,从s顺着有残余流量的正向边dfs打标记fr,从t顺着正向边有残余流量的反向 ...
- ZOJ2587 Unique Attack(判定最小割唯一性)
看了题解,自己大概想了下. 最小割唯一的充分必要条件是残量网络中所有点要嘛能从源点floodfill到要嘛能floodfill到汇点. 必要性,这是当然的,因为假设从源点floodfill或者从汇点反 ...
随机推荐
- 设置eclipse默认用户名
在使用Eclipse自动生成注释时,用户名总会被设置成Windows的登陆用户名.但大多数时候Windows用户名并不是我们写到注释里的用户名. 为了不想一个文件一个文件地修改,可以在最初时就设设置好 ...
- 如何使用shell收集linux系统状态,并把结果发给远端服务器
第一步:收集系统当天状态 load状态 内存状态 cpu状态 jvm相关信息:jstat jstack 网络信息 硬盘信息 第二步:发送到远端服务器 使用curl.wget.定义接口. https:/ ...
- Cocos2d-x 3.1.1 学习日志12--一Cocos2dx3.1.1移植到Android平台的方法(最实用最有效的!!)
须要用到工具(依照顺序): 1.JDK 2.NDK 3.ANT 4.Adt-bundle-windows 将JDK文件夹下的bin文件夹路径加入到系统环境变量中. 解压NDK 解压Adt-bundle ...
- MyBatis -- sql映射文件具体解释
MyBatis 真正的力量是在映射语句中. 和对等功能的jdbc来比价,映射文件节省非常多的代码量. MyBatis的构建就是聚焦于sql的. sql映射文件有例如以下几个顶级元素:(按顺序) cac ...
- 遍历数据库全部表,将是datetime类型的列的值进行更新
declare @tablename nvarchar(80) declare @cloumn nvarchar(80) declare @sql nvarchar(400) declare ...
- 浅谈JavaScript的面向对象程序设计(三)
前面已经对JavaScript的面向对象程序设计作了简单的介绍,包括了对象的属性.对象的工厂模式.构造函数和原型等.通过介绍,这些创建对象的方法依然有不少优化和改进的地方. 组合使用构造函数模式和原型 ...
- Attribute(特性)
一向都觉得.NET的Attribute好神秘.一个方框框住的东西,置身于类.方法的头部,本身不在类或方法里面,但又会起作用,有时作用还很大,仿佛充满了魔力.简直给人一种无冕之王,幕后之黑手的感觉! 某 ...
- visio2010对齐粘附功能
对齐与粘附功能在绘图时应用非常广泛.可以快速将图形对齐,以及将连接点准确地吸附在你想要连接的点上. 那么visio2010对齐粘附功能隐藏在什么地方呢? 你可以点击[视图]选项卡,在[视觉帮助]组中. ...
- 网络驱动移植之net_device结构体及其相关的操作函数
内核源码:Linux-2.6.38.8.tar.bz2 在Linux系统中,网络设备都被抽象为struct net_device结构体.它是网络设备硬件与上层协议之间联系的接口,了解它对编写网络驱动程 ...
- bzoj2683(要改一点代码)&&bzoj1176: [Balkan2007]Mokia
仍然是一道cdq模版.. 那么对于一个询问,容斥一下分成四个,变成问(1,1)~(x,y),那么对于x,y,修改只有x'<=x&&y'<=y,才对询问有影响,那么加上读入顺 ...