zoj 2587 Unique Attack【最小割】
拆点拆魔怔了
直接按照原图建就行,这里有个小技巧就是双向边的话不用按着板子建(u,v,c)(v,u,0)(v,u,c)(u,v,0),直接建(u,v,c)(v,u,c)会快十倍!800ms->80ms,建完之后跑一遍dinic,然后从s顺着有残余流量的正向边dfs打标记fr并且计数ss,从t顺着正向边有残余流量的反向边dfs打标记to并且计数st,最后如果st+ss==n则是惟一的,否则不是,因为最大流后,割边一定满流。
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int N=805,inf=1e9,L=2005;
int n,m,h[N],cnt=1,le[N],s,t,ss,st;
bool fr[N],to[N];
struct qwe
{
int ne,no,to,v;
}e[N*N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].v=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].v>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||!f)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(le[e[i].to]==le[u]+1&&e[i].v>0)
{
int d=dfs(e[i].to,min(e[i].v,f-us));
e[i].v-=d;
e[i^1].v+=d;
us+=d;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
void dfs1(int u)
{
fr[u]=1;ss++;
for(int i=h[u];i;i=e[i].ne)
if(!fr[e[i].to]&&e[i].v!=0)
dfs1(e[i].to);
}
void dfs2(int u)
{
to[u]=1;st++;
for(int i=h[u];i;i=e[i].ne)
if(!to[e[i].to]&&e[i^1].v!=0)
dfs2(e[i].to);
}
int main()
{
while(1)
{
memset(h,0,sizeof(h));
memset(fr,0,sizeof(fr));
memset(to,0,sizeof(to));
cnt=1;ss=0,st=0;
n=read(),m=read();s=read(),t=read();
if(n==0)
break;
for(int i=1;i<=m;i++)
{
int x=read(),y=read(),z=read();
add(x,y,z);
add(y,x,z);
}
dinic();
dfs1(s);
dfs2(t);
if(ss+st==n)
puts("UNIQUE");
else
puts("AMBIGUOUS");
}
return 0;
}
zoj 2587 Unique Attack【最小割】的更多相关文章
- zoj 2587 Unique Attack 最小割判定
题目链接 让你判断最小割是否唯一. 判断方法是, 先求一遍最大流, 然后从源点dfs一次, 搜索未饱和边的数目. 从汇点dfs一次, 同样也是搜索未饱和边的数目, 看总和是否等于n. 如果等于n那么唯 ...
- ZOJ 2587 Unique Attack (最小割唯一性)
题意 判断一个无向图的割是否唯一 思路 错误思路:一开始想的是判断割边是否都是关键割边,那既然割边两端点能连通S.T点的边是关键边,那么只要遇到有某个边两端点不连通S or T则这条边就不是关键割边( ...
- ZOJ 2587 Unique Attack(最小割唯一性判断)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2587 题意:判断最小割是否唯一. 思路: 最小割唯一性的判断是先跑一遍最大 ...
- ZOJ - 2587 Unique Attack (判断最小割是否唯一)
题意:判断最小割是否唯一. 分析:跑出最大流后,在残余网上从源点和汇点分别dfs一次,对访问的点都打上标记. 若还有点没有被访问到,说明最小割不唯一. https://www.cnblogs.com/ ...
- ZOJ-2587-Unique Attack(最小割的唯一性)
题意: 求无向图最小割是否唯一 分析: 1.我们先对原图求一次最大流 2.对残留网络,我们从S开始,找到所有所有S能到达的点:再从T开始,找出所有能到达T的点. 3.判断原网络中是否还有没有访问到的点 ...
- ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)
[题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...
- ZOJ 3792 Romantic Value 最小割(最小费用下最小边数)
求最小割及最小花费 把边权c = c*10000+1 然后跑一个最小割,则flow / 10000就是费用 flow%10000就是边数. 且是边数最少的情况.. #include<stdio. ...
- zoj 2532 Internship【最小割】
就是求哪些边在最大流上满流,也就是找割边.把0作为t点,s向所有的1~n连流量为inf的边,其他的边按照流量连.跑一遍最大流,从s顺着有残余流量的正向边dfs打标记fr,从t顺着正向边有残余流量的反向 ...
- ZOJ2587 Unique Attack(判定最小割唯一性)
看了题解,自己大概想了下. 最小割唯一的充分必要条件是残量网络中所有点要嘛能从源点floodfill到要嘛能floodfill到汇点. 必要性,这是当然的,因为假设从源点floodfill或者从汇点反 ...
随机推荐
- 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 A,D
A链接:https://www.nowcoder.com/acm/contest/163/A Fruit Ninja is a juicy action game enjoyed by million ...
- HDU 5573 Binary Tree【构造】
几天前模拟区域赛的一道题,今天发现在草稿箱里直接补个博客. 感觉这还是一道很有意思的构造题. 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5573 ...
- POJ 1741 Tree【树分治】
第一次接触树分治,看了论文又照挑战上抄的代码,也就理解到这个层次了.. 以后做题中再慢慢体会学习. 题目链接: http://poj.org/problem?id=1741 题意: 给定树和树边的权重 ...
- OSGI是什么
OSGI(Open Services Gateway Initiative),或者通俗点说JAVA动态模块系统,定义了一套模块应用开发的框架.OSGI容器实现方案如Knopflerfish, Equi ...
- Swift初体验之HelloWord+苹果Swift编程语言新手教程【中文版】
AppDelegate.swift : <span style="font-size:24px;"><strong>// // AppDelegate.sw ...
- Angular2.x
Angular版本 Angular1和Angular4分别是Angular的两个版本,也就是Angular1.x和Angular2.x(除了Angular1以外,其余都属于Angular2.x). 1 ...
- QC ALM 11创建域、项目和用户
一旦HP-ALM安装,我们仅仅能继续创建域.项目和用户使用后的ALM工作.以下是步骤来创建项目.域和用户. 一.创建域 1.对于创建域,第一步是进入站点管理员页面.开展QC使用URL - ...
- 访问某类型的元数据的方式-TypeDescriptor 类
.NET Framework 提供了两种访问某类型的元数据的方式:通过 System.Reflection 命名空间中提供的反射 API,以及通过 TypeDescriptor 类.反射是可用于所有类 ...
- 2016/05/05 smarty ① 登录 ②主页面 ③删除 ④让缩略信息显示完整 (补:增加 修改 )
共 八个页面 ①login.php <?php include("init.inc.php"); $smarty->display("login.html& ...
- MongoDB数据库的初识
1,MongoDB是基于分布式文件存储的数据库,有c++语言编写,旨在为WEB应用提供可扩展的高效性能数据存储解决方案. MongoDB是一个介于关系型数据库和非关系数据库之间的产品,是非关系数据库当 ...