高斯消元

注意浮点误差,判断一个浮点数是否为 0 的时候,看他的绝对值与 \(10^{-8}\)的关系

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
using namespace std;
double a[20][20], b[20], c[20][20];
int n;
int main(){
cin>>n;
for(int i = 1; i <= n + 1; i++) {
for(int j = 1; j <= n; j++) {
cin>>a[i][j];
}
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
c[i][j] = 2 * (a[i][j] - a[i + 1][j]);
b[i] += a[i][j] * a[i][j] - a[i + 1][j] * a[i + 1][j];
}
}
for(int i = 1; i <= n; i++) {
for(int j = i; j <= n; j++) {
if(fabs(c[j][i]) > 1e-8) {
for(int k = 1; k <= n; k++) {
swap(c[j][k], c[i][k]);
}
swap(b[i], b[j]);
break;
}
}
for(int j = 1; j <= n; j++) {
if(i == j) continue;
double rate = c[j][i] / c[i][i];
for(int k = i; k <= n; k++){
c[j][k] -= rate * c[i][k];
}
b[j] -= rate * b[i];
}
}
for(int i = 1; i < n; i++) printf("%.3lf ", b[i] / c[i][i]);
printf("%.3lf\n", b[n] / c[n][n]);
return 0;
}

洛谷 [P4035] 球形空间生成器的更多相关文章

  1. 洛谷P4035 球形空间产生器 [JSOI2008] 高斯消元

    正解:高斯消元 解题报告: 链接! 昂开始看到以为是,高斯消元板子题? 开始很容易想到的是,虽然是多维但是可以类比二维三维列出式子嘛 但是高斯消元是只能处理一元问题的啊,,,辣怎么处理呢 对的这就是这 ...

  2. 洛谷P4035 [JSOI2008]球形空间产生器(高斯消元)

    洛谷题目传送门 球啊球 @xzz_233 qaq 高斯消元模板题,关键在于将已知条件转化为方程组. 可以发现题目要求的未知量有\(n\)个,题目却给了我们\(n+1\)个点的坐标,这其中必有玄机. 由 ...

  3. [洛谷P4035][JSOI2008]球形空间产生器

    题目大意:给你$n$个点坐标,要你求出圆心 题解:随机化,可以随机一个点当圆心,然后和每个点比较,求出平均距离$r$,如果到这个点的距离大于$r$,说明离这个点远了,就给圆心施加一个向这个点的力:若小 ...

  4. 题解 洛谷P4035/BZOJ1013【[JSOI2008]球形空间产生器】

    题目链接在这QvQ "你要求出这个n维球体的球心坐标",这使我想到的解方程...... 先假设n=2,这是一个二维平面.设圆心的坐标为\((x,y)\),有两个坐标\((a_1,b ...

  5. 洛谷P3600 随机数生成器(期望dp 组合数)

    题意 题目链接 Sol 一条重要的性质:如果某个区间覆盖了另一个区间,那么该区间是没有用的(不会对最大值做出贡献) 首先不难想到枚举最终的答案\(x\).这时我们需要计算的是最大值恰好为\(x\)的概 ...

  6. [洛谷P5147]随机数生成器

    题目大意:$$f_n=\begin{cases}\frac{\sum\limits_{i=1}^nf_i}n+1&(n>1)\\0&(n=1)\end{cases}$$求$f_n ...

  7. 洛谷P3600随机数生成器——期望+DP

    原题链接 写到一半发现写不下去了... 所以orz xyz32768,您去看这篇题解吧,思路很清晰,我之前写的胡言乱语与之差距不啻天渊 #include <algorithm> #incl ...

  8. 洛谷P3306 随机数生成器

    题意:给你一个数列,a1 = x,ai = (A * ai-1 + B) % P,求第一个是t的是哪一项,或者永远不会有t. 解:循环节不会超过P.我们使用BSGS的思想,预处理从t开始跳√P步的,插 ...

  9. 洛谷 P3600 - 随机数生成器(期望 dp)

    题面传送门 我竟然独立搞出了这道黑题!incredible! u1s1 这题是我做题时间跨度最大的题之一-- 首先讲下我四个月前想出来的 \(n^2\log n\) 的做法吧. 记 \(f(a)=\m ...

随机推荐

  1. UVa 12219 Common Subexpression Elimination (stl,模拟,实现)

    一般来说,把一颗子树离散成一个int,把一个结点的字符离散成一个int会方便处理 直接map离散.当然一个结点最多只有4个小写字母,也可以直接编码成一个27进制的整数,舍掉0,为了区分0和0000. ...

  2. Xcode4删除文件后missing file警告

    1.运行终端,执行命令行进入missing file目录,然后运行 svn delete nameOfMissingFile 或 git rm nameOfMissingFile 2.删除隐藏的.sv ...

  3. GYM 101604 || 20181010

    看着前面咕咕咕的国庆集训 难受 十月十日要萌一天哇www A.字符串 题意:给定一个字符串 问能否交换两个字符或者不交换字符,使其成为回文串 之前写的太丑 重写一遍加一堆 if 竟然过了w 思路:求出 ...

  4. selenium--Xpath定位

    前戏 前面介绍过了七种定位方式,今天来介绍最后一种,也是最强大,本人最常用的定位方式xpath Xpath 即为 xml 路径语言,它是一种用来确定 xml 文档中某部分位置的语言.Xpath 基于 ...

  5. tomcat中如何禁止和允许主机或地址访问

    1.tomcat中如何禁止和允许列目录下的文件 在{tomcat_home}/conf/web.xml中,把listings参数设置成false即可,如下: <servlet>...< ...

  6. tkinter学习-菜单与画布

    阅读目录 Menu 菜单控件 Menubutton 菜单按钮控件 OptionMenu 选项菜单 Canvas 画布控件 Menu: 说明:菜单控件,显示菜单栏,下拉菜单和弹出菜单 属性:创建一个顶级 ...

  7. vuex其实超简单,只需3步

    前言 之前几个项目中,都多多少少碰到一些组件之间需要通信的地方,而因为种种原因,event bus 的成本反而比vuex还高, 所以技术选型上选用了 vuex, 但是不知道为什么,团队里的一些新人一听 ...

  8. mbist summary

    1. 关于mbist,网上也有介绍,觉得不错: 推荐的mbistt的博客:奋斗的猪 2.使用的工具是mbistarchitect,不是tessent. 3.工具使用的相关文档:从EETOP和工具自带的 ...

  9. 模块导入及使用,关键字,模块搜索路径,python文件的两种用途

    06.05自我总结 一.模块导入及使用 1.模块导入的两种方式 我们拿time模块并使用其中的time功能进行举例 a)第一种 import time print(time.time) import首 ...

  10. Python之路-基础数据类型之字典 集合

    字典的定义-dict 字典(dict)是python中唯⼀的⼀个映射类型.他是以{ }括起来的键值对组成,字典是无序的,key是不可修改的.dic = {1:'好',2:'美',3:'啊'} 字典的操 ...