Description

你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作:

命令

参数限制

内容

1 x y A

1<=x,y<=N,A是正整数

将格子x,y里的数字加上A

2 x1 y1 x2 y2

1<=x1<= x2<=N

1<=y1<= y2<=N

输出x1 y1 x2 y2这个矩形内的数字和

3

终止程序

Input

输入文件第一行一个正整数N。
接下来每行一个操作。
 

Output

对于每个2操作,输出一个对应的答案。
 

Sample Input

4
1 2 3 3
2 1 1 3 3
1 2 2 2
2 2 2 3 4
3

Sample Output

3
5

HINT

1<=N<=500000,操作数不超过200000个,内存限制20M。
对于100%的数据,操作1中的A不超过2000。
/*
第一次写cdq分治,先看了2013年集训队作业中许昊然的论文,有了一点初步理解,然后又做这个题,
感觉对cdq分治的大概思路有了一定认识。 cdq分治要求可离线,并且各个修改操作之间互不影响,且对查询操作的贡献独立。
我们考虑将操作分治,那么后一般操作中的修改是独立的,查询至于前一半的所有修改和后一般在它时间之前的修改有关,
对于前一半修改可以预处理,对于后一半在它之前的,可以递归处理。 这个题目的数据范围二维数据结构是不好过的,所以可以考虑将某一维排序,然后用一位数据结构维护。
我们用前缀和的思想,将求和操作理解为四个单点查询操作,然后对于每个查询操作x,y,对他有贡献的修改操作
一定是时间在它之前的并且x比它小的,所以我们可以按照x坐标排序,然后用树状数组维护y坐标的值。
*/
#include<cstdio>
#include<iostream>
#include<algorithm>
#define N 800010
using namespace std;
int n,tot,T,ans[N],tree[N];
struct node{
int op,x,y,A,no,belong;
};node Q[N],tq[N];
bool cmp(const node&s1,const node&s2){
if(s1.x==s2.x&&s1.y==s2.y) return s1.op<s2.op;
if(s1.x==s2.x) return s1.y<s2.y;
return s1.x<s2.x;
}
void modify(int x,int v){
while(x<=n){
tree[x]+=v;
x+=x&(-x);
}
}
int query(int x){
int sum=;
while(x){
sum+=tree[x];
x-=x&(-x);
}
return sum;
}
void solve(int l,int r){
if(l==r)return;
int mid=l+r>>;
for(int i=l;i<=r;i++)
if(Q[i].no<=mid&&Q[i].op==) modify(Q[i].y,Q[i].A);
else if(Q[i].no>mid&&Q[i].op==){
if(Q[i].A) ans[Q[i].belong]+=query(Q[i].y);
else ans[Q[i].belong]-=query(Q[i].y);
}
for(int i=l;i<=r;i++)
if(Q[i].no<=mid&&Q[i].op==) modify(Q[i].y,-Q[i].A);
int l1=l,l2=mid+;
for(int i=l;i<=r;i++)
if(Q[i].no<=mid)tq[l1++]=Q[i];
else tq[l2++]=Q[i];
for(int i=l;i<=r;i++)
Q[i]=tq[i];
solve(l,mid);solve(mid+,r);
}
int main(){
scanf("%d",&n);
int opt,x,y,v,x1,y1;
while(){
scanf("%d",&opt);
if(opt==){
scanf("%d%d%d",&x,&y,&v);
Q[++tot].op=;Q[tot].x=x;Q[tot].y=y;Q[tot].A=v;Q[tot].no=tot;
}
else if(opt==){
scanf("%d%d%d%d",&x,&y,&x1,&y1);
Q[++tot].op=;Q[tot].x=x-;Q[tot].y=y-;Q[tot].A=;Q[tot].no=tot;Q[tot].belong=++T;
Q[++tot].op=;Q[tot].x=x-;Q[tot].y=y1;Q[tot].A=;Q[tot].no=tot;Q[tot].belong=T;
Q[++tot].op=;Q[tot].x=x1;Q[tot].y=y-;Q[tot].A=;Q[tot].no=tot;Q[tot].belong=T;
Q[++tot].op=;Q[tot].x=x1;Q[tot].y=y1;Q[tot].A=;Q[tot].no=tot;Q[tot].belong=T;
}
else break;
}
sort(Q+,Q+tot+,cmp);
solve(,tot);
for(int i=;i<=T;i++)
printf("%d\n",ans[i]);
return ;
}

简单题(bzoj 1683)的更多相关文章

  1. 【BZOJ】【4066】简单题(强制在线)

    KD-Tree KD-Tree的进阶姿势戳这里 http://zyfzyf.is-programmer.com/posts/92431.html 为啥有种线段树&平衡树的即视感……(树形结构的 ...

  2. BZOJ 2683: 简单题

    2683: 简单题 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 913  Solved: 379[Submit][Status][Discuss] ...

  3. bzoj 4066: 简单题 kd-tree

    4066: 简单题 Time Limit: 50 Sec  Memory Limit: 20 MBSubmit: 234  Solved: 82[Submit][Status][Discuss] De ...

  4. BZOJ 3687: 简单题 bitset

    3687: 简单题 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 小呆开始研究集合论了,他 ...

  5. bzoj 1176: [Balkan2007]Mokia&&2683: 简单题 -- cdq分治

    2683: 简单题 Time Limit: 50 Sec  Memory Limit: 128 MB Description 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要 ...

  6. 【BZOJ4066】简单题(KD-Tree)

    [BZOJ4066]简单题(KD-Tree) 题面 BZOJ 题解 如果这题不卡空间,并且不强制在线的话 显然可以用\(CDQ\)分治做 但是它又卡空间又强制在线,于是我们欢快的来用\(KD-Tree ...

  7. bzoj4066: 简单题 K-Dtree

    bzoj4066: 简单题 链接 bzoj 思路 强制在线.k-dtree. 卡常啊.空间开1e6就T了. 代码 #include <bits/stdc++.h> #define my_m ...

  8. 【BZOJ-1176&2683】Mokia&简单题 CDQ分治

    1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1854  Solved: 821[Submit][St ...

  9. Bzoj4066 简单题

    Time Limit: 50 Sec  Memory Limit: 20 MBSubmit: 2185  Solved: 581 Description 你有一个N*N的棋盘,每个格子内有一个整数,初 ...

  10. Bzoj2683 简单题

    Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 1071  Solved: 428 Description 你有一个N*N的棋盘,每个格子内有一个整数, ...

随机推荐

  1. 洛谷 P1276 校门外的树(增强版)

    题目描述 校门外马路上本来从编号0到L,每一编号的位置都有1棵树.有砍树者每次从编号A到B处连续砍掉每1棵树,就连树苗也不放过(记 0 A B ,含A和B):幸运的是还有植树者每次从编号C到D 中凡是 ...

  2. 使用javap分析Java的字符串操作

    我们看这样一行简单的字符串赋值操作的Java代码. String a = "i042416"; 使用命令行将包含了这行代码的Java类反编译查看其字节码: javap -v con ...

  3. Cannot fetch index base URL https://pypi.python.org/pypi/ 解决方法

    vi /etc/resolv.conf # Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8) # ...

  4. spring_boot入门

    核心: 控制反转(Inversion of Control-IOC)和依赖注入(Dependency Injection-DI) Spring中两者是相同的, 控制反转是用依赖注入实现的. 这里, 依 ...

  5. pathForResource获取资源为nil的原因

    利用NSbundle获取 资源文件的时候,如果是自己添加的文件,获取的时候纵使返回nil的解决办法.原因是因为该文件没有添加到资源文件中,只要在添加文件的时候选择添加到 Create Folder R ...

  6. dubbo 分布式治理

    1. dubbo 仅支持java语言之间的通讯. 2. dubbo 产生的背景是因为分布式的情况下产生的. 3. 解决服务治理的问题,通过注册中心进行管理 4.SOA 治理方案 tcp 协议传输,只需 ...

  7. 自动发表QQ空间说说

    require("gb2312toutf8") local http = require "socket.http" local surl = "ht ...

  8. Burpsuite1.7.03网站渗透神器最新破解版

    众所周知,Burp Suite是响当当的web应用程序渗透测试集成平台.从应用程序攻击表面的最初映射和分析, 到寻找和利用安全漏洞等过程,所有工具为支持整体测试程序而无缝地在一起工作. 平台中所有工具 ...

  9. Bootstrap历练实例:导航中的表单

    Bootstrap历练实例:导航中的表单,它是使用class.navbar-form类,这确保了表单适当的垂直对齐和在较窄的视口中折叠的行为,使用这个对齐方式选项来决定导航栏中的内容放置在哪里. 实例 ...

  10. JavaScript reduce() 方法

    转载:http://www.runoob.com/jsref/jsref-reduce.html  JavaScript Array 对象 实例 计算数组元素相加后的总和: var numbers = ...