Network
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 14103   Accepted: 5528   Special Judge

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each
worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs).

Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one
because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections.

You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied.

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered
from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There
will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs
of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
4
1 2
1 3
2 3
3 4

Source

Northeastern Europe 2001, Northern Subregion



题目链接:poj.org/problem?

id=1861



题目大意:n个点,m条线,每条线有个权值,如今要求最长的路最短且让各个点都连通,求最短的最长路,边个数和相应边



题目分析:例子有问题,应该是

1

4

1 2

1 3

3 4

裸的Kruskal注意这里要求最长路最短,而Kruskal正好是对权值从小到大排序后的贪心算法

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const MAX = 15005;
int fa[MAX];
int n, m, ma, num;
int re1[MAX], re2[MAX]; struct Edge
{
int u, v, w;
}e[MAX]; bool cmp(Edge a, Edge b)
{
return a.w < b.w;
} void UF_set()
{
for(int i = 0; i < MAX; i++)
fa[i] = i;
} int Find(int x)
{
return x == fa[x] ? x : fa[x] = Find(fa[x]);
} void Union(int a, int b)
{
int r1 = Find(a);
int r2 = Find(b);
if(r1 != r2)
fa[r2] = r1;
} void Kruskal()
{
UF_set();
for(int i = 0; i < m; i++)
{
int u = e[i].u;
int v = e[i].v;
if(Find(u) != Find(v))
{
re1[num] = u;
re2[num] = v;
Union(u, v);
ma = max(ma, e[i].w);
num ++;
}
if(num >= n - 1)
break;
}
} int main()
{
ma = 0;
num = 0;
scanf("%d %d", &n, &m);
for(int i = 0; i < m; i++)
scanf("%d %d %d", &e[i].u, &e[i].v, &e[i].w);
sort(e, e + m, cmp);
Kruskal();
printf("%d\n%d\n", ma, num);
for(int i = 0; i < num; i++)
printf("%d %d\n", re1[i], re2[i]);
}

POJ 1861 Network (Kruskal求MST模板题)的更多相关文章

  1. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  2. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  3. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  4. POJ 1258 Agri-Net 【Prime】模板题

    题目链接>>> 题目大意:     给你N*N矩阵,表示N个村庄之间的距离.FJ要把N个村庄全都连接起来,求连接的最短距离(即求最小生成树).解析如下: #include <c ...

  5. POJ 1273:Drainage Ditches 网络流模板题

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 63339   Accepted: 2443 ...

  6. POJ 1860 Currency Exchange【bellman-Ford模板题】

    传送门:http://poj.org/problem?id=1860 题意:给出每两种货币之间交换的手续费和汇率,求出从当前货币s开始交换回到s,能否使本金增多. 思路:bellman-Ford模板题 ...

  7. POJ 1258:Agri-Net Prim最小生成树模板题

    Agri-Net Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 45050   Accepted: 18479 Descri ...

  8. [poj1144]Network(求割点模板)

    解题关键:割点模板题. #include<cstdio> #include<cstring> #include<vector> #include<stack& ...

  9. POJ 3624 Charm Bracelet(01背包模板题)

    题目链接 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 52318   Accepted: 21912 Descriptio ...

随机推荐

  1. opencv3+python+pycharm报错问题(cmd命令正常)

    2018-03-0223:58:59 首先在你已成功安装python的情况下运行cmd命令,下载安装opencv插件 如果在命令行可以使用 import cv2 但是在IDE上面只输入import c ...

  2. IT项目为什么失败 --美国IT项目管理硕士笔记(一)

    IT项目为什么失败 什么是项目   项目可以被看作任何一系列的活动和任务.这些活动和任务有一个特定目标需要在特定要求下完成,并有一个明确的开始结束日期和资金限制(如果有).项目需要消耗人力或非人力资源 ...

  3. Qt 5.8.3 部署/添加 Crypto++第三方库(5.6.5版本)

    首先,Qt没有封装加解密算法库(其实有个哈希函数的函数).介于OpenSSL函数封装不友好,以及先前爆发的心脏滴血漏洞广受诟病,我们考虑在C++上使用一种新的,并且封装友好的,OOAD程度更高的加解密 ...

  4. canvas一周一练 -- canvas绘制奥运五环(1)

    运行效果: <!DOCTYPE html> <html> <head> </head> <body> <canvas id=" ...

  5. 你的宽带ip地址被100.64了吗?

    你的宽带ip地址被100.64了吗?   最近需要用外网的时候发现,宿舍路由wan口的ip变成了100.64.X.X,本以为是一个外网的ip,可事实上并不是,并且从外网无法直接访问.   首先,我们都 ...

  6. POJ_2387_最短路

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 46859   Accepted ...

  7. vuex与redux,我们都一样

    vuex与redux的主要区别: redux:生成的全局数据流是通过每个组件的props逐层传递到各个子组件的,通过@connect装饰器绑定在this.props上面. vuex :生成的全局数据则 ...

  8. 带返回值的线程Callable

  9. Java基础——从数组到集合之间关键字的区别!!!!

    1.&& 和 &区别和联系: 相同点 : 结果是一样的.       不同点 :如果使用双&号判断,如果说条件一为false,不会判断条件二,但是单&号会继续判 ...

  10. 诊断:ORA-01919: role ‘PLUSTRACE’ does not exist

    如下错误 SQL> grant plustrace to scott; grant plustrace to scott * ERROR at line 1: ORA-01919: role ' ...