这个题仔细一看就是生成树计数,但是我这个记性是真的差,早就忘了。复习了一下高斯消元,然后这个题就是很裸的题了。

ps:高斯消元解行列式的时候要取反。

题干:

题目背景

当今社会,在社交网络上看朋友的消息已经成为许多人生活的一部分。通常,一个用户在社交网络上发布一条消息(例如微博、状态、Tweet等) 后,他的好友们也可以看见这条消息,并可能转发。转发的消息还可以继续被人转发,进而扩散到整个社交网络中。
题目描述 在一个实验性的小规模社交网络中我们发现,有时一条热门消息最终会被所有人转发。为了研究这一现象发生的过程,我们希望计算一条消息所有可能的转发途径有多少种。为了编程方便,我们将初始消息发送者编号为1,其他用户编号依次递增。 该社交网络上的所有好友关系是已知的,也就是说对于A、B 两个用户,我们知道A 用户可以看到B 用户发送的消息。注意可能存在单向的好友关系,即lA 能看到B 的消息,但B 不能看到A 的消息。 还有一个假设是,如果某用户看到他的多个好友转发了同一条消息,他只会选择从其中一个转发,最多转发一次消息。从不同好友的转发,被视为不同的情况。 如果用箭头表示好友关系,下图展示了某个社交网络中消息转发的所有可能情况。 (初始消息是用户1发送的,加粗箭头表示一次消息转发) 输入输出格式
输入格式: 输入文件第一行,为一个正整数n,表示社交网络中的用户数; 第二行为一个正整数m,表示社交网络中的好友关系数目。 接下来m 行,每行为两个空格分隔的整数aia_iai​和bib_ibi​,表示一组好友关系,即用户aia_iai​ 可以看到用户bib_ibi​ 发送的消息。 输出格式: 输出文件共一行,为一条消息所有可能的转发途径的数量, 除以10007 所得的余数。

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(register int i = a;i <= n;++i)
#define lv(i,a,n) for(register int i = a;i >= n;--i)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
const int mod = 1e4 + ;
int n,m;
int f[][];
int gauss()
{
int ans = ;
for(int i = ;i <= n;++i)
{
for(int j = i + ;j <= n;++j)
{
while(f[j][i])
{
int t = f[i][i] / f[j][i];
for(int k = i;k <= n;k++)
{
f[i][k] = (f[i][k] - t * f[j][k] % mod + mod) % mod;
}
swap(f[i],f[j]);
ans = -ans;
}
}
if(f[i][i] == ) return ;
ans = (ans * f[i][i]) % mod;
}
return (ans + mod) % mod;
}
int main()
{
read(n);read(m);
duke(i,,m)
{
int x,y;
read(x);read(y);
f[x][x]++;
f[x][y]--;
}
duke(i,,n)
{
duke(j,,n)
{
if(f[i][j] < )
f[i][j] += mod;
}
}
printf("%d\n",gauss() % mod);
return ;
}

P4455 [CQOI2018]社交网络的更多相关文章

  1. P4455 [CQOI2018]社交网络(矩阵树定理)

    题目 P4455 [CQOI2018]社交网络 \(CQOI\)的题都这么裸的吗?? 做法 有向图,指向叶子方向 \(D^{out}(G)-A(G)\) 至于证明嘛,反正也就四个定理,先挖个坑,省选后 ...

  2. [HEOI2015]小Z的房间 && [CQOI2018]社交网络

    今天看了一下矩阵树定理,然后学了一下\(O(n ^ 3)\)的方法求行列式. 哦对了,所有的证明我都没看-- 这位大佬讲的好呀: [学习笔记]高斯消元.行列式.Matrix-Tree 矩阵树定理 关于 ...

  3. LG4455 【[CQOI2018]社交网络】

    分析 这题我们先转化为图论模型,发现求的其实就是有向图中以1为根的生成树数量.而关于这一问题存在O(3^n * n^2)的算法,一看数据n=250,发现不行.于是需要更高效的算法--Matrix-Tr ...

  4. BZOJ5297 CQOI2018 社交网络 【矩阵树定理Matrix-Tree】

    BZOJ5297 CQOI2018 社交网络 Description 当今社会,在社交网络上看朋友的消息已经成为许多人生活的一部分.通常,一个用户在社交网络上发布一条消息(例如微博.状态.Tweet等 ...

  5. bzoj 5297: [Cqoi2018]社交网络

    Description 当今社会,在社交网络上看朋友的消息已经成为许多人生活的一部分.通常,一个用户在社交网络上发布一条消息 (例如微博.状态.Tweet等)后,他的好友们也可以看见这条消息,并可能转 ...

  6. [CQOI2018] 社交网络

    题目背景 当今社会,在社交网络上看朋友的消息已经成为许多人生活的一部分.通常,一个用户在社交网络上发布一条消息(例如微博.状态.Tweet等) 后,他的好友们也可以看见这条消息,并可能转发.转发的消息 ...

  7. BZOJ5297 CQOI2018社交网络(矩阵树定理)

    板子题. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> # ...

  8. [BZOJ5297][CQOI2018]社交网络

    bzoj luogu sol 就是求以\(1\)为根的生成树的数量. 直接矩阵树定理. code #include<cstdio> #include<algorithm> #i ...

  9. BZOJ5297 [Cqoi2018]社交网络 【矩阵树定理】

    题目链接 BZOJ5297 题解 最近这玩意这么那么火 这题要用到有向图的矩阵树定理 主对角线上对应入度 剩余位置如果有边则为\(-1\),不然为\(0\) \(M_{i,i}\)即为以\(i\)为根 ...

随机推荐

  1. mybatis查询返回null解决方案

    mybatis查询返回null解决方案: 问题:查询出的列与javabean中的字段名不一致. 解决方案: 1.将javabean中的字段改为和查询出的列名一致: 2.将sql加入as改变列名,和ja ...

  2. mysql与时间有关的查询

    date(str)函数可以返回str中形如"1997-05-26"格式的日期,str要是合法的日期的表达式,如2008-08-08 22:20:46 时间是可以比较大小的,例如: ...

  3. msp430项目编程13

    msp430中项目---温湿度检测系统 1.dht11工作原理 2.电路原理说明 3.代码(显示部分) 4.代码(功能实现) 5.项目总结 msp430项目编程 msp430入门学习

  4. ubuntu 配置 samba, win7 map network device from linux

    一. samba的安装: # sudo apt-get insall samba # sudo apt-get install smbfs 二. 创建共享目录,或是找已经存在的文件夹,只要权限放开就行 ...

  5. ACM-ICPC 2018 徐州赛区网络预赛 D 杜教筛 前缀和

    链接 https://nanti.jisuanke.com/t/31456 参考题解  https://blog.csdn.net/ftx456789/article/details/82590044 ...

  6. Spring Data Redis与Jedis的选择(转)

    说明:内容可能有点旧,需要在业务上做权衡. Redis的客户端有两种实现方式,一是可以直接调用Jedis来实现,二是可以使用Spring Data Redis,通过Spring的封装来调用.应该使用哪 ...

  7. Trac常用插件描述! - wang_xf的Study home - 博客频道 - CSDN.NET

    Trac常用插件描述! - wang_xf的Study home - 博客频道 - CSDN.NET

  8. asp.net core 集成JWT(二)token的强制失效,基于策略模式细化api权限

    [前言] 上一篇我们介绍了什么是JWT,以及如何在asp.net core api项目中集成JWT权限认证.传送门:https://www.cnblogs.com/7tiny/p/11012035.h ...

  9. Structual设计--Bridge模式

    1.意图 将抽象部分与它的实现部分分离.使他们都能够独立地变化. 2.别名 Handle/Body 3.动机 当一个抽象对象可能有多个实现时,通经常使用继承来协调它们.抽象类定义对该抽象的接口.而详细 ...

  10. MySQL基础笔记(二) 完整性约束

    我们知道,一种数据模型必须包含三个基本的部分: 构造机制(数据结构):主要描述数据的类型.内容.性质以及数据间的联系等. 运算机制(数据操作):主要描述在相应的数据结构上的操作类型和操作方式. 约束机 ...