number number number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 175    Accepted Submission(s): 119

暴力发现当4 12 33 88 232

和斐波那契数列对比  答案为 第2*k+3个数减1

直接用矩阵快速幂求的F[2*k+3]  然后减1

A=1,B=0;

然后矩阵快速幂2*k+3-1次得到F[2*k+3]

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<string.h>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<cstdlib>
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const int INF=0x3f3f3f3f;
const int num=;
const int mod=;
int N;
struct Mat{
ll a[num][num];
void init(){
memset(a,,sizeof(a));
for(int i=;i<num;i++)
a[i][i]=;
}
};
Mat mul(Mat a,Mat b){
Mat ans;
for(int i=;i<N;i++){
for(int j=;j<N;j++){
ans.a[i][j]=;
for(int k=;k<N;k++){
ans.a[i][j]+=a.a[i][k]*b.a[k][j];
}
ans.a[i][j]=ans.a[i][j]%mod;
}
}
return ans;
}
Mat power(Mat a,int n){
Mat ans;
ans.init();
while(n){
if(n&){
ans=mul(ans,a);
}
n=n>>;
a=mul(a,a);
}
return ans;
}
int main(){
int k;
N=;
while(scanf("%d",&k)!=EOF){
k=k*+;
Mat aa;
aa.a[][]=;
aa.a[][]=;
aa.a[][]=;
aa.a[][]=;
Mat ans=power(aa,k-);
ll t=((ans.a[][]-)%mod+mod)%mod;
cout<<t<<endl;
}
return ;
}

hdu 6198(矩阵快速幂)的更多相关文章

  1. HDU 2855 (矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ ...

  2. HDU 4471 矩阵快速幂 Homework

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...

  3. HDU - 1575——矩阵快速幂问题

    HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973.  Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n( ...

  4. hdu 1757 (矩阵快速幂) 一个简单的问题 一个简单的开始

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * ...

  5. 随手练——HDU 5015 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5015 看到这个限时,我就知道这题不简单~~矩阵快速幂,找递推关系 我们假设第一列为: 23 a1 a2 ...

  6. HDU 3802 矩阵快速幂 化简递推式子 加一点点二次剩余知识

    求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} ...

  7. How many ways?? HDU - 2157 矩阵快速幂

    题目描述 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的 ...

  8. HDU 5950 矩阵快速幂

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  9. hdu 1757 矩阵快速幂 **

    一看正确率这么高,以为是水题可以爽一发,结果是没怎么用过的矩阵快速幂,233 题解链接:点我 #include<iostream> #include<cstring> ; us ...

  10. HDU 4686 矩阵快速幂 Arc of Dream

    由式子的性质发现都是线性的,考虑构造矩阵,先有式子,a[i] = ax * a[i-1] + ay; b[i] = bx*b[i-1] +by; a[i]*b[i] = ax*bx*a[i-1]*b[ ...

随机推荐

  1. CAD隐藏或显示工具条上的按钮(com接口VB语言)

    主要用到函数说明: MxDrawXCustomFunction::Mx_HideToolBarControl 隐藏或显示工具条上的按钮.详细说明如下: 参数 说明 IN LPCTSTR pszTool ...

  2. Java基础——异常

    一.什么是异常  异常的英文单词是exception,字面翻译就是“意外.例外”的意思,也就是非正常情况.事实上,异常本质上是程序上的错误,包括程序逻辑错误和系统错误.比如使用空的引用.数组下标越界. ...

  3. 每日命令:(2)cd

    Linux cd 命令可以说是Linux中最基本的命令语句,其他的命令语句要进行操作,都是建立在使用 cd 命令上的. 所以,学习Linux 常用命令,首先就要学好 cd 命令的使用方法技巧. 1.  ...

  4. ubuntu14.04 fcitx安装

    先卸载ibus sudo apt-get remove ibus (也可尝试不卸载ibus,直接安装fcitx) 添加源 sudo add-apt-repository ppa:fcitx-team/ ...

  5. 洛谷 2824 [HEOI2016/TJOI2016]排序

    [题意概述] 对一个1到n的排列做m次区间排序,最后询问位置q上面的数. [题解] 区间排序的效率是nlogn,所以暴力做的话效率是mnlogn,显然达不到要求. 我们考虑二分答案.如果某个位置的数比 ...

  6. VM 与 与 Linux 的安装

    [VMWare  安装] 输入后, [CentOS ] 1  检查 BIOS  虚拟化 2.新建虚拟机 3.新建虚拟机向导 4创建虚拟空盘 5  安装 Linux  系统对应的 CentOS 6  虚 ...

  7. IDEA下tomcat中web项目乱码,控制台乱码解决指南

    若是由于过滤器,request ,response等原因,不适用. 原文作者:http://www.kafeitu.me/tools/2013/03/26/intellij-deal-chinese- ...

  8. Java基础学习总结(80)——Java性能优化详解

    让Java应用程序运行是一回事,但让他们跑得快就是另外一回事了.在面对对象的环境中,性能问题就像来势凶猛的野兽.但JVM的复杂性将性能调整的复杂程度增加了一个级别.这里Refcard涵盖了JVM in ...

  9. noip模拟赛 蒜头君的树

    分析:这道题问的是树上整体的答案,当然要从整体上去考虑. 一条边对答案的贡献是这条边一端连接的点的个数*另一端连接的点的个数*边权,可以用一次dfs来统计答案,之后每次更改操作在原答案的基础上增减就好 ...

  10. N的阶乘 mod P

    基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入N和P(P为质数),求N! Mod P = ? (Mod 就是求模 %)   例如:n = 10, P = 11,10 ...