number number number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 175    Accepted Submission(s): 119

暴力发现当4 12 33 88 232

和斐波那契数列对比  答案为 第2*k+3个数减1

直接用矩阵快速幂求的F[2*k+3]  然后减1

A=1,B=0;

然后矩阵快速幂2*k+3-1次得到F[2*k+3]

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<string.h>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<cstdlib>
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const int INF=0x3f3f3f3f;
const int num=;
const int mod=;
int N;
struct Mat{
ll a[num][num];
void init(){
memset(a,,sizeof(a));
for(int i=;i<num;i++)
a[i][i]=;
}
};
Mat mul(Mat a,Mat b){
Mat ans;
for(int i=;i<N;i++){
for(int j=;j<N;j++){
ans.a[i][j]=;
for(int k=;k<N;k++){
ans.a[i][j]+=a.a[i][k]*b.a[k][j];
}
ans.a[i][j]=ans.a[i][j]%mod;
}
}
return ans;
}
Mat power(Mat a,int n){
Mat ans;
ans.init();
while(n){
if(n&){
ans=mul(ans,a);
}
n=n>>;
a=mul(a,a);
}
return ans;
}
int main(){
int k;
N=;
while(scanf("%d",&k)!=EOF){
k=k*+;
Mat aa;
aa.a[][]=;
aa.a[][]=;
aa.a[][]=;
aa.a[][]=;
Mat ans=power(aa,k-);
ll t=((ans.a[][]-)%mod+mod)%mod;
cout<<t<<endl;
}
return ;
}

hdu 6198(矩阵快速幂)的更多相关文章

  1. HDU 2855 (矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ ...

  2. HDU 4471 矩阵快速幂 Homework

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...

  3. HDU - 1575——矩阵快速幂问题

    HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973.  Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n( ...

  4. hdu 1757 (矩阵快速幂) 一个简单的问题 一个简单的开始

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * ...

  5. 随手练——HDU 5015 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5015 看到这个限时,我就知道这题不简单~~矩阵快速幂,找递推关系 我们假设第一列为: 23 a1 a2 ...

  6. HDU 3802 矩阵快速幂 化简递推式子 加一点点二次剩余知识

    求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} ...

  7. How many ways?? HDU - 2157 矩阵快速幂

    题目描述 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的 ...

  8. HDU 5950 矩阵快速幂

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  9. hdu 1757 矩阵快速幂 **

    一看正确率这么高,以为是水题可以爽一发,结果是没怎么用过的矩阵快速幂,233 题解链接:点我 #include<iostream> #include<cstring> ; us ...

  10. HDU 4686 矩阵快速幂 Arc of Dream

    由式子的性质发现都是线性的,考虑构造矩阵,先有式子,a[i] = ax * a[i-1] + ay; b[i] = bx*b[i-1] +by; a[i]*b[i] = ax*bx*a[i-1]*b[ ...

随机推荐

  1. WebAssembly 上手

    安装 Mac 上最便捷的安装方式当然是通过 Homebrew: $ brew install emscripten 安装好之后讲道理就已经自动配置好一切,然后 emcc 命令便可用了. 下面看非 Ho ...

  2. Java排序算法全

    目录 Java排序算法代码 零. 排序基类 一. 选择排序 二. 插入排序 三. 希尔排序 四. 归并排序 1. 自顶向下 2. 自底向上 五. 快速排序 1. 基本版 2. 双路切分版 3. 三路切 ...

  3. HTML5网页如何调用浏览器APP的微信分享功能?

    if (/AppleWebKit.*Mobile/i.test(navigator.userAgent) || (/MIDP|SymbianOS|NOKIA|SAMSUNG|LG|NEC|TCL|Al ...

  4. 「 RQNOJ PID204 」 特种部队

    解题思路 看了一下题解,感觉题解貌似有些错误.所以把我的见解放在这里,希望路过的大佬可以帮忙解释一下 QAQ 就是这里的更新 $dp[i-1][i]$ 和 $dp[i][i-1]$ 的时候,之前博主说 ...

  5. Codeforces 280C - Game on Tree

    传送门:280C - Game on Tree 不知道期望是啥的请自行Baidu或Google,(溜了 题目大意,有一棵有根树,每次随机选择一个节点,将这个节点和它的子树删除,问将整棵树删除的期望次数 ...

  6. UVA 674 Coin Change (完全背包)

    解法 dp表示目前的种数,要全部装满所以f[0]=1其余为0的初始化是必不可少的 代码 #include <bits/stdc++.h> using namespace std; int ...

  7. 深度完整的了解MySQL锁

    今天就讲讲MySQL的锁 主讲:Mysql的悲观锁 和 乐观锁官方:If you query data and then insert or update related data within th ...

  8. hadoop full cluster 改为伪分布

    https://hadoop.apache.org/docs/r2.7.6/hadoop-project-dist/hadoop-common/SingleCluster.html#Pseudo-Di ...

  9. ZOJ 3684 Destroy

    Destroy Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on ZJU. Original ID: 36 ...

  10. 通过混合编程分析的方法和机器学习预测Web应用程序的漏洞

    通过混合编程分析的方法和机器学习预测Web应用程序的漏洞 由于时间和资源的限制,web软件工程师需要支持识别出有漏洞的代码.一个实用的方法用来预测漏洞代码可以提高他们安全审计的工作效率.在这篇文章中, ...