Keras Documentation https://keras.io/

You have just found Keras.

Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlowCNTK, orTheano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

Use Keras if you need a deep learning library that:

  • Allows for easy and fast prototyping (through user friendliness, modularity, and extensibility).
  • Supports both convolutional networks and recurrent networks, as well as combinations of the two.
  • Runs seamlessly on CPU and GPU.

a high-level neural networks AP的更多相关文章

  1. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  2. [转]Neural Networks, Manifolds, and Topology

    colah's blog Blog About Contact Neural Networks, Manifolds, and Topology Posted on April 6, 2014 top ...

  3. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

  4. ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS

    ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS We recently interviewed ...

  5. 提高神经网络的学习方式Improving the way neural networks learn

    When a golf player is first learning to play golf, they usually spend most of their time developing ...

  6. (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  7. (转)A Beginner's Guide To Understanding Convolutional Neural Networks

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  8. 深度卷积神经网络用于图像缩放Image Scaling using Deep Convolutional Neural Networks

    This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning base ...

  9. Classifying plankton with deep neural networks

    Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...

随机推荐

  1. thinkphp5中extend的使用?

    1.创建处理数组的类ArrayList.php <?php /** * ArrayList实现类 * @author liu21st <liu21st@gmail.com> */ c ...

  2. c++ 回调的实现

    什么是回调?通常发生在需要两个角色即调用者与实现者的情形上,即我们希望当产生某个事件时,调用实现者定义的某个函数.当然这个概念很大,不是说操作系统的信号量,条件变量什么的,是在语言级别实现,如一个Fr ...

  3. 2019浙师大校赛(浙大命题)(upc复现赛)总结

    2019浙师大校赛(浙大命题)(upc复现赛)总结 早上九点开始.起得迟了,吃了早饭慌慌张张跑过去,刚到比赛就开始了. 开始分别从前往后和从后往前看题,一开始A题,第一发WA,第二次读题发现漏看了还有 ...

  4. Java格式化CST时间(mysql date类型)

    在从mysql导入数据时候,mysql里的日期是格林威治时间,普通格式化不行,这里总结一下格式化格林威治时间的方法: Date date = new Date(); System.out.printl ...

  5. 97-2016年11月1日AUDUSD在公布利率后反手做单感悟(2016.11.2)

    2016年11月1日AUDUSD在公布利率后反手做单感悟         11月1日,澳联储公布利率决议,保持利率不变,AUDUSD大涨.我在上面做空认为市场会回调.做空位置是根据多种斐波那契技术找的 ...

  6. 3W法则-学习Docker

    一.前言       5W1H法则是在一次面试中学习到的,后来在工作也开始使用这种东西,虽然最后没去那家公司,但是也是学习到了,关注开这些东西以后,也发现了一些简化版的3W法则,最近公司也要搞Doce ...

  7. Vue页面骨架屏(二)

    实现思路 参考原文中在构建时使用 Vue 预渲染骨架屏一节介绍的思路,我将骨架屏也看成路由组件,在构建时使用 Vue 预渲染功能,将骨架屏组件的渲染结果 HTML 片段插入 HTML 页面模版的挂载点 ...

  8. Git和SVN共存的方法

    刚工作的时候都是用的cvs和svn,对git不熟悉,随着工作的需要,打分支和版本管理的需要,熟悉起来了git,这一用不可收拾,比svn远远好用,尤其是版本分支管理上,切换分支的方便性,现在这家公司还是 ...

  9. 九度oj 题目1070:今年的第几天?

    题目1070:今年的第几天? 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6832 解决:3779 题目描述: 输入年.月.日,计算该天是本年的第几天. 输入: 包括三个整数年(1< ...

  10. [luoguP1011] 车站(递推)

    传送门 蒟蒻我关系式没有找出来. 直接模拟递推过程好了. 代码 #include <cstdio> #define N 21 int a, n, m, x, y; int up[N][2] ...